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Calculus 1c-3 Preface

Preface

In this volume I present some examples of Integrals, cf. also Calculus 1a, Functions of One Variable.
Since my aim also has been to demonstrate some solution strategy I have as far as possible structured
the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.
I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
24th July 2007
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Calculus 1c-3 Partial integration

1 Partial integration

Example 1.1 Calculate the integrals
(1) /xe""’ dz, (2) /xe”’2 dx.

A. Integration.
D. Apply partial integration in (1), and integration by a substitution in (2).

I. 1) We get by a partial integration
/:L'emdx:wewf /1-exdx:xexfem =(zx—1)e".

2

?

' : 1 : 1 [ - . 1 -
/wemzdz:f/ex2~21’dw:f/e‘r’zd(:ﬁz):femz.
. 2. 2. 2

C. TesT. We get by a differentiation

2) Applying the substitution v = x*, du = 2x dz, we get

d
D L@y =1 4 (0= Dot = e,
d 1 2 1 2 2
9y L)1 = — 2.9 .7 = o, .E.D.
) dZL’{Qe } 5 2a-e xe Q

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Calculus 1c-3 Partial integration

Example 1.2 Calculate the integrals

(1) /3:1c cos® x dx, (2) /23@2 cosx dx.

A. Integration.
D. In (1) we use integration ny the substitution v = 2, and in (2) we apply partial integration.

I. 1) When u = 22, we see that du = 2z dx, so

3 3
/3:1c cos z2 dx — / cosudu = [— sin u}
2 Jumn? 2 w

= sinz2.

2

2) In this case we get by a series of partial integrations that
/23:2 cosxdr = 2z% sinx — 4/3; -sinx dx

= 272 sinx+4x~cosxf4z/1-cosxdx
=222 sinz + 4z cosz — 4 sin x.

C. TEsT. We get by differentiation

1) 4 {§ sin (IQ)} = g cos (z2) - 2z)3x cos (2?). Q.E.D.

d
. {2x2 sinx +4x cosx — 4 sinx}
T

=4z sinz + 222 cosz + 4 cosx — 4z sinx — 4 cosx
= 222 cos . Q.E.D.

Example 1.3 1) Calculate the integral

1
/Lﬂdu’ u>0’
u

by first applying partial integration.

2) Find the complete solution of the differential equation

de 1 1
— 4+ -z=In(1+- t .
dt+tx n<+t>, >0

(In one of the occurring integrals one may introduce the substitution t = %)
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Calculus 1c-3

Partial integration

A. 1) Integral.

2) Linear differential equation of first order, where one possibly should apply the result from (1).

D. 1) Apply a partial integration.
2) Solve the differential equation.

I. 1) When u > 0, we get by a partial integration that

1 1 1 11 1

In the latter integral we decompose the integrand

1 1 1 a b c
14w

1
It follows immediately that ¢ = 3’ hence

a b1 1 1 1 —u?
u?  u 2ur(14+wu) 2 u?(l+w)
1 1l-uw 1 1 11
2 w2 2 w2 2w
Since u > 0, we get by insertion that
In(1+w) 1 1 1
11 1 11 1
1 1 11 1
= 5<1——2)ln(1—|—u)—§a——lnu
C. TEsT. By differentiation we get for u > 0,
d (1 1 11 1
1 11 11
In(1 1 21 1
_ n(l+w) 1f u (1—u)
ud 2 | u?(u+1) 2
In(1+w) 1fu—-1 1-u In(1+w)
= - = . .E.D.
u? 2{ u? * u? } ul Q

2) When the differential equation is multiplied by ¢ > 0, we get

d dx 1
)=t 4 1ler=tInf{1+-=
dt(t x) tdt—|— x tn<—|—t>,

¢
hence the corresponding homogeneous equation has the solutions . ce€Rand t # 0, and a
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Calculus 1c-3

Partial integration

particular integral is given by

1 1 1 1 1

_ _l/ n(t+w)

u3d

1
= 5 <——1>ln1—|—u)+ —|—lnu} 1

|
- (7))

1 1

= (2= t+1)—= —llt—t——lt
(DIt 4 1) = 2 (# Dt 4 ot

1

1 1
5 (t—z)l n(t+1) - gtnt+ 3.

<

~

The complete solution is then

xTr =

1 1 1 1

C. TesT. With the x above we get

dx+x 1 1_|_1 1(t—|—1)—|—1t 1 1 11t 1 ¢
a r _ 2 “\m P I PP
dt 't 2 12 2 t) t+1 2 2 2
1 1 1 11 ¢
1— = |In(t+1)—=Int+ =~ 4 —
+2( t2>n(+) p Myt e
1(t2—1 1 1
= In(t+1)—Int+ = 1+ =
nt+1) n+2{ t t+1 +t}

1y 1(t—1 t—1 1
= I(1+4-)4-d— " =mIn(1+-]),.
A R e B GO R
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Calculus 1c-3 Integration by simple substitutes

2 Integration by simple substitutions

Example 2.1 Calculate the integrals

1
x, |z|< <.

>
x oy
2

(1) /ﬁm SC) /ﬁd
Write a MAPLE programme for the first integral.
A. Integral.
D. Find convenient substitutions:

1) Since the structure of the denominator is vu? — 1, choose u = cosh .

2) Since the structure of the denominator is v/1 — u2, choose by analogy u = cost, (where u = sint
also would give us the result).

1
I a) If we put = = cosht, ¢ > 0, we see that this substitution is monotonous, and t =
1
In (295 +V4z? — 1). Hence, dx = 3 sinhtdt, sinht > 0, i.e.
1
/‘ L / g St 1 sinht
= dr = >
Vdz? —1 4olcosh2t—1 2J Vcosh®t —1
4
1 sinh ¢ t 1
Lt (e i),
2/+sinht 5 — g nF v

www.job.oticon.dk
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Calculus 1c-3 Integration by simple substitutes

A possible MAPLE programme is the following
expr = 1/(sqrt(4*x"2-1));

0 < L
< =
2
B 1
) 422 —1
otherwise
422 -1

1
which suffices in our case, though it is wrong for x < 7 Then continue by the command

int (expr,x); by which we get the resultat

N —

0 xr <

iln(m\/Z—l— Viar? —1)V/4 x>

1
This is acceptable, because we shall only need the result for > 3 Notice that one still
must reduce v4 = 2 oneself.

1
b) If we put = = cost, t €10, x|, this substitution is monotonous, ¢ = Arccos(2x), and we

1
get that do = 5 sintdt, sint > 0, t €]0, 7, i.e.

1 — = Sint 1 : t
/7(1‘% = / 2 dt = —— Ldt
V1 —4x2 /1_4.1“)5% 2 ) V1 —cos?t
4

1

sint t 1

_ __/ dt = —= = 3 Arccos(2x).

2 +sint 2

C. TEST.
1 1
a) When z = 3 In (22 + V42?2 — 1), z > X fas

de 1 1 (2+1 S8z )
dt 2 2r++4x2 —1 8 VAz?2 —1

1 2x
20 ++V4x? -1 ( V4x? —1)
B 1 Vaz? — 1+ 22
2w+ VA1 VA2 — 1
1
= — .E.D.
472 — 1 Q

1 11
b) When z = —3 Arccos(2x), x € ]—5, 3 [, fas

dx 1 -1 1

a2 /1 (22) 2 VI— 422 QED.
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Calculus 1c-3

Integration by simple substitutes

Example 2.2 Calculate the integrals

A. Integrals.

D. The methods here are:

—d
2+ 2 *

1) Substitute, such that the denominator takes on the form kv/1 — #2. Then integrate.
2) Substitute, such that the denominator takes on the form k+/1 + ¢2. Then integrate.
3) Substitute, such that the denominator takes on the form k(1 + ¢?). Then integrate.

I. 1) We must require that 22? < 1, i.e. |z| <

1
—d
/\/1—2:52 ‘

1 1
——. Then we substitute t = V2 x, i.e. x = — 1,
V2 V2 ¥
1 1 1
— —dt = [— Arcsin t}
/t_m V-2 V2 V2 =VEa
1
= — Arcsin (\/5 ) .
V2

2) Here we get for every x € R that

/wzl—wdx%/@‘“/%ﬁ“

Now

d(Arsinh y)

1

dy

thus

/ 1
2+ 2

3) Here we get

1
2+ 2

dx

dx

V1+y?

[Arsinh t]t:% =1In

o

1
ln(x—l— x2—|—2>—§1n2.

22
—+1
2+

12
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Calculus 1c-3 Integration by simple substitutes

C. TEsT.
1) When
f(z) = % Arcsin(V2 ),
we get
1 1 1

1 _ 2 — ,

f (27) \/5 1_ (ﬁx)Q /1 _ 2$2
Q.E.D.
2) When

fl@)=ln(z+ Va2 +2)— % In2,

we get
1 1 2z
(@) = — 1 1+_.—}
F@) x+\/x2—|—2{ 2 a2 4+2
B 1 Vat+2+x 1
T+ V2 +2 V2 +2 oz +2’
Q.E.D.
3) When
f(z) = — Arctan <—) ,
V2 V2
we get
1 1 1 1 1 1
4 [ — - = — . e
f(l‘)— \/5 T 2 \/5 2 JL‘Q 2—‘1-.272’
1+<—) 14+ —
V2 2
Q.E.D.

Example 2.3 Calculate the integral
3 4
/ + 5 ¢ dw.
202 +1 (22 +4)

A. Integral

D. Split the integral into a sum of two integrals. In the former one we use the substitution ¢t = v/2 z,
x
and in the latter one we use the substitution ¢ = 5

Download free books at BookBooN.com
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Calculus 1c-3 Integration by simple substitutes

I. We first split the integral in the following way,

/ 5 + 1 dx—/ 5 dx—|—/ 1 de =1, + I
202 +1  (e2+4)7° ([ J V2P +i @+47 "

Then perform the following separate calculations,

j— /de_/ _3 L
! TS Vi VE 1 V2
3 ) 3
= 7 [Arsinh t],_ 5, = 7 In (\/5:3—1- V22 + 1)
3 1 3
= —hh|lz+4/22+ -] ——=1n2,
V2 ( 2) 2v/2
and

L = /dei/mdm

t
——— + Arctan t]
[t2 +1 i

z
-2

Today’s job market values amb
universities foster these qualitie
close to the latest ideas and glob
SI, Whatever your career goals mz
Swedish Institute skilx and a competitive advantage

Download free books at BookBooN.com

14


http://bookboon.com/count/pdf/346303/14

Calculus 1c-3 Integration by simple substitutes

Suppressing the arbitrary constants we finally get

/ 5 + 1 dw—iln x+\/x2—|—1 —|—1L—&-1ArctanE
2024+ 1 (22 +4)° V2 2 222 +4 4 2

C. In the TEST it will ease matters if we check each subresult:

I,. When
f(x)—iln x4/ a2+ =
=% 5|
we get
3 1
Pa) = S 1
2 +\/x2+1 x2+1
x Z =
2 2
_ o3 3
V2 1T 222+1
Vi1
2
I>. When
1 T 1 T
g(gc):5 552——|—4+1Amtan >
we get
1 1-(22+4)—x-22 1 1 1
/
g(aj) s — 3 +_. 2._
2 2 4 2
(2 +4) 1_1_%
_ 1 —x2—|—4+l L1 (=2 +4)+ (@ +4)
2 (22+44)% 2 2244 2 (22 +4)!
B 4
(224 4)%

Example 2.4 Calculate the integral

11—z
/1+\/§da§, x>0,

by introducing the substitution x = t2.

A. Integral.

D. Introduce the suggested substitution, which is nothing but naming the unpleasant /x something
different, here t. In one of the variants one may start by reducing the integrand before the
integration.

Download free books at BookBooN.com
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Calculus 1c-3 Integration by simple substitutes

I. First variant. When z # 1, > 0, we choose t = +/x > 0 as our monotonous substitution, and
it follows that dx = 2r dt. Then by insertion for z > 0,

1— 1—t t—t?
/ ﬁdx: —-2tdt:2/ dt.
1+ vz 1+t 1=y L+t

Since

t—12=— (P +1)+20t+1) —2=(t+1)(~t+2) -2,

a continuation of the calculations gives

/1_ﬁdx - 2/ {t+2i}dt
14+ x =/ t+1

t2
= 2 [5+2t21nt+1|}

t=vz
= —z+4y/x—4In(vx+1).

Second variant. ALTERNATIVELY we first reduce the integrand in the following way:

1—\/5__1+2_+1 4z
1+vz 1+vz 2y 1+ /x

4 1 4
-1 — . .
NN AR N

Then for x > 0,

e A R A R L

= x+4ﬁ4/%

= —x+4yr—4In(1+x).

C. TEsST. Let

fz) = —2+4Vr — 4 In(\/z + 1), x> 0.

Then by a differentiation,

T S 4 1
fla) = —4+5 2~ i ok
1 1 2
1
= 1+\/§{_1_\/§+2}
1=z
14+
Q.ED.

Download free books at BookBooN.com
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Calculus 1c-3 Integration by simple substitutes

Example 2.5 Ezplain why

/ﬁd\/l—ﬂﬂ: Arcsin /1 — z2.
Vi—-(1—-=z

This integral can be found in many ways. The following three functions can actually all be used for
x €]0,1][:

; v/ 2
— Arcsin x, — Arccos V1 — 22, Arccos .

Explain why a calculation of the integral can give four different results.
What is the relationship between those four functions?

A. Discuss an integral and prove that four apparent different functions are all integrals of the same
integrand.

D. 1) Substitute.

2) Differentiate the claimed integrals and find their relationships for = €]0, 1] by insertion of one
point.

I. 1) It is obvious that we must assume that @ €] — 1,1[. When we substitute ¢t = v/1 — 22 we get

V1— a2

dt
/t_m V1—1t2
= [Arcsin t],_ g7z = Arcsin /1 — 22
2) Now let = €]0,1[. Then we get (apart from constants)

Vi-z?2 =

| ==

1 1 —T
S T
/\/1—(1—952) /\/x_2 V1—a2
_ dr { — Arcsin z,
V122 Arccos z.

We get by another rearrangement,
1
Vit - - {_ L wie _xa}
= — Arccos 1 — 2.

Hence, the four functions Arcsin v/1 — 22, — Arcsin 2, — Arccos v/1 — 22 and Arccos x are all
integrals of the same function in ]0,1[. They only differ from each other by a constant in the
interval ]0, 1[.

| ==

1
When z = — €10, 1], we get

V2
1
Arcsin /1 — 22 = Arcsin — =

)

5
N

. o1 T
— Arcsin x = — Arcsin — =

VR

Download free books at BookBooN.com
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Calculus 1c-3 Integration by simple substitutes

1 ™
— Arccos V1 — 22 = — Arccos —= = ——,
V2 4

1 ™
Arccos x = Arccos — = —.
V2 o4
Thus when x €10, 1],
Arcsin v/1 —22 = Arccos x = g — Arcsin z

= g — Arccos /1 — 22,

and we have found the not surprising relationship between the four functions.

Example 2.6 Calculate the integral

z>1,

1
— . da,
/ zvz? —1

1
by introducing the substitution vt = ——, t € ]0, T [
cost 2

A. Integral.

D. Introduce the suggested substitution.
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Calculus 1c-3 Integration by simple substitutes

1
I. If we choose x = coss Ve SCe that z(t) runs monotonously through the interval |1, 400[ (a necessary
cos

condition for the substitution), when ¢ runs through }O, g [ Here

sint

1
t = Arccos (E) og dr = dt,

cos?t

and since sint > 0 in the interval we get

/ 1 d / 1 sint gt
- dx = .
zva? —1 t= Arccos(L) 1 1 1 cos?t

V cos2t

cost

sint 1
= 2 . dt
t= Arccos(L) COS l /1 —cos?t
cos?t
1
= dt = Arccos —.
t= Arccos(L) z

C. TEST. When z > 1, we get by differentiation that

d 1 1 1 1
— Arccos - = —\— | —— | = ————
dx T 1 2 21
1-—= R
2 72
= ! Q.ED
T ED..

Example 2.7 Calculate the integral

z > 0,

1
—dx,
/ zva? +1

1
by introducing the substitution xt = ——, t > 0.
sinh ¢

A. Integral.

D. Apply the given substitution.

1
I. If we choose x = e t > 0, as our substitution, we see that this is monotonously decreasingand
sin
that

1 ht
t = Arsinh —, x>0, og dx = _C?S 5 dt.
T sinh

Download free books at BookBooN.com
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Calculus 1c-3

Integration by simple substitutes

Then by insertion,

1
——dx
/ vz 41

B / sinht (
t= Arsinh(1) [cosh?t sinh? ¢
sinh? ¢

ht
cos > &t

1 1 1
= —/ dt =— Arsinh —=—-In( - +4/—5 +1
t= Arsinh(2) T € €

1+ vV1+ a2 x
= —-n|l——— | =lh| ———— ), x> 0.
T 1+V1+ a2
C. TEsT. We get by differentiation
d x d
—SIn [ ———— = —{lnx—ln(l—l—\/l—l—xQ)}
dff{ <1+\/1+x2)} dzx
1 1 T
T 1+VI4+a22 V1422
Vit a2+ 14a?—a? 1 QE.D
r(1+V1+22)V1+22 2Vl + 22 S
Example 2.8 Calculate the integral
2
x
—dx, r| <1,
[ s

by introducing the substitutionen x = sint.
A. Integration.
D. Apply the given substitution.
I. Let x =sint, t € ]—g7 g [ Then x(¢) is monotonous on the interval | — 1,1[ and

t = Arcsin x, dx = costdt, cost > 0.

Hence,
x? sin? ¢
—dx:/ ———————— -costdt
/ V1— 22 t= Arcsin & \/1 — sin®¢t

1-— 2t
:/ sinztdt:/ R e
t= Arcsin X t= Arcsin X 2

1 1
=3 Arcsin x — 1 sin(2 Arcsin x)

1 1
=3 Arcsin z — 1 2 - sin(Arcsin z) - cos(Arcsin x)

1 . 1 . 92 .
=3 Arcsin x — 3% <—|—\/1 — sin®(Arcsin x))

1 1
= §Arcsin o 5:5\/1 — 2.

20
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Calculus 1c-3 Integration by simple substitutes

C. TesT. We get by differentiation

d (1 1
— {5 Arcsin x — ix\/l —1’2}

dx
=53 VP
:%ﬁ {1-(1—2% +2°}
2 2
_ % . \/f”i — - \/1x_ - QED.

Example 2.9 Write the polynomial P(x) = (x + 2)(3 — z) in the form
P(z) = a* — (z — b)>.

Calculate the integral
1
/ S S
Vie+2)(3—x)

A. Integration with hidden guidelines.
D. Follow the guideline and substitute. Where is the integrand defined?

I. By a rearrangement we get

11 1 ? 1\?
(z+2)(3—x):6+x—12:4+1—1+2-§x—z2 <§) <x—>

(g)2{1—<§x—%>2}>0 forx €] —2,3[.

The integrand is defined for z €] — 2, 3[. In this interval we use the substitution

thus

[ Vewaa=atsl 1(; 1)2‘“

/ 1 i Aresi (2 1>
= = recsmy| -xr — — .
t=2a-1 V1 —1t2 5 5

Download free books at BookBooN.com
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Calculus 1c-3 Integration by simple substitutes

C. TEST. By a differentiation we get
d 2 1
— Arcsin | —x— - | =
dx 5 5

2
VB r2e-1)G-22+1) J@+20)(6-22) J2+a)B-2) QE.D.

Example 2.10 Calculate the integral

dx, |z] <1,

4z
/\/1—x2(3+x2)

by first introducing the substitution x = sint and then the substitution u = cost.

A. Integration by successive substitutions.

D. Analyze the substitutions and integrate. ALTERNATIVELY it is possible directly to apply the
substitution © = /1 — 22, a guess which is already indicated by the structure of the integrand.

o
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Calculus 1c-3 Integration by simple substitutes

T
I. First variant. When 2 €]—1, 1], we get that = sint, t € } —3'3 {, is a monotonous substitution,

t = Arcsin z and dx = costdt.

T
Since cost > 0, when x € ]—5, 5 [, we get by an insertion that

dt

/ 4z d / 4sint - cost
€T =
V1—x2(3+2?) t= Arcsin = \/1 —sin®t - (3 + sin? )
4sint 4
=/ Lledt:—/ 7 du
t= Arcsin z 3 +sin“t u=cos t 4—u

1 1
= - du=nju—2|—Injlu+2[],_, ==
/u_cos(AI‘CSin x) {’LL -2 u+ 2} —hvie
) 2 — 1 — 122
= In _— 5
241 — 22
where we have applied that cos(Arcsin z) = +v1 — z2.
Second variant. If we put u = v/1 — 22, we formally obtain that

2 2 £
‘- =1—u”", med du = ————— dx.
V1 — 22

This substitution is not monotonous. However, the factor \/?z? is already present in the

integrand, so this requirement is of no importance. Hence,

/ 1z de = 7/ 4 du
V1—122(3+22) B wevi=zz 3+ 1 —u?
4
St
u=yi—z2 U? —4

and then we continue as in the first variant.
C. TEST. When |z| < 1, we get by a differentiation,

d (2—\/1—x2>

L T e
dx 241 — 22

- 2—¢11——x2{\/1—x—x2}2+\/11—x2 {ﬂiaﬂ}

T 1 1
\/1—1‘2{2—\/1—m2+2+\/1—x2}

x 2+vV1I—a2?)+ (2—V1—2a?)
Vi—22 4—(1—a2)

4
- w QED.

V1—22(3+22)
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Calculus 1c-3 Integration by simple substitutes

Example 2.11 Calculate the integral

/m

(e

by introducing the substitution x = sinht.

A. Integration by a substitution.
D. Introduce the substitution and integrate.

I. The substitution x = sinht¢, t = Arsinh z, is monotonous and dx = cosh t dt, where cosht > 0. By
this substitution we get

v1+x2d B V1 + sinh® ¢
2\2 r = P R coshtdt
(1+2?) t= Arsinn z (1 + sinh® ¢)?2
1
= / ——— dt = tanh(Arsinh x)
t= Arsinh = COSh™ ¢
sinh(Arsinh x) x x

cosh(Arsinh ) +\/1 + sinh?(Arsinh ) V1422
C. TEsT. By differentiating we get

d T 1 T
T — = — <{1-4/1 P —
dﬂﬂ{\/Hx?} 1+x2{ e \/1+x2}
B 1 1422 —2?  V1+a? QED
1422 142 (142?)? S

Example 2.12 By introducing the substitution x = costt in the interval x € [—1,1] we get
1 1
V1—a?dr = —§Arccos T+ 5:5\/1 — 22,

Hence the right hand side is an integral in the closed interval [—1, 1], and nevertheless Arccos x is not
differentiable for x = +1. Explain this apparent contradiction.

A. Integration. Neither Arccos x nor xv/1 — 22 are differentiable for x = +1. The right hand side er
continuous in [—1, 1].

D. Prove that the right hand side is an integral of v/1 — 22 in the open subinterval | — 1,1][.
I. Obviously

1 1
fz) = —5 Arccos = + Ex\/l — 22
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Calculus 1c-3 Integration by simple substitutes

is continuous for = € [—1, 1] and differentiable for x €] — 1, 1[. By differentiating we get

) = L N
RS 2( \/1—x2>+ \/1—3:2
1 1—2?
= s = ta L i - Vi—2,

proving that f(z) is in fact an integral of /1 — 22 in ] —1,1].

By continuity this must also hold in the end points.
. . 1 1 .
Note that the two “singularities” of —— Arccos x and ix\/l — 22 in %1 are cancelled by the

differentiation, so the sum of them becomes differentiable.

Example 2.13 1) Prove the formula

T

tanh(Arsinh ) = ——, rzeR.
( ) V1422
2) Then calculate the integral
V1+ a2
——— dz, xR,
(14 22)?

by applying the substitution xr = sinhu.

3) Find the complete solution of the differential equation

teR.

da
?4+1) = 4t =
(+)dt+x 2+1

4) Indicate that solution x = p(t), for which ¢(0) = —1.

A. Derive a formula. Find an integral. Solve a non-normed linear differential equation of first order.
Notice that (1) and (2) have already been treated in Example 2.11.

D. Start from the beginning. Remember the tests.

I. 1) Since coshy = +/1+ sinh? y, we get for z € R,
sinh(Arsinh x)
(cosh(Arsinh )

€T €T

\/1 + sinhQ(Arsinh x) V1+a?

tanh(Arsinh ) =
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Integration by simple substitutes

2) The substitution = = sinhu is monotonous, so

/ V1422 B / V1 +sinh?u
u=Arsinhx

N2 g yoT e
(1+ 22)2 (1 + sinh? u)2

coshu 1
u=Arsinh z COSh™ U u=Arsinh # COSh™ U

tanh(Arsinh z) = m

NI

coshu du

hvor vi har benyttet (1).
C. TEsT. By differentiating,
d x 1 x?
S =) = 1~\/1+x2—7}
i (=) = et i
1 V1l 4a?
(14+a2)V1+a2 (1+a?)?

Q.E.D.
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Calculus 1c-3

Integration by simple substitutes

3) First variant. Dividing by /1 + ¢2 we get

dz t d 241
A/12 2 1) =
N i dt(x”t“L) (2 +1)2
hence by (2),

t
V12 + —/ t2+1 dt+c—

- _|_ 07
V2 +1
and the complete complete solution is obtained by a division by /2
t c

m:t2+1+ t2+1, CGR, tER
Second variant. When the equation is normed we get

dx t 1

- = , teR.

at 210 2+ 1)

Here,

t 1
Pit)= [ 5——dt=-In(t*+1
®) /t2+1 y I +1),
hence a solution of the homogeneous equation is
PO — 1
ViZ +1

Thus, a particular integral is given by

1 t t
«ﬂ /)ﬁ+1 TVl JErl 2t
where we have applied (2). The complete solution is then
t c
T = + , ceR, teR.
22+1 V241
C. TEST. By insertion into the differential equation we get
dx
2 +1)— +t
(t*+1) praL
1—¢2 t t2 ct
=(t*+1 +c<>}+ +
( ){(t2+1)2 (2 +1)3 2+1 VEE+1
1—¢2 ct t2 ct 1
_ _ = .E.D.
t2+1 t2+1+t2+1+\/t2+1 t2+1 Q
4) When t = 0, we get
410(0) -1=0 + c,
hence ¢ = —1, and the wanted solution is
t 1
t) = — .
() t2+1 2 +1
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Calculus 1c-3 Integration by simple substitutes

Example 2.14 Find an integral of the function

(2) = z—3/x+8
I = e —4/a +5)(Va+3)

x> 0.

A. Integral.
D. Decompose, substitute and integrate.

I. When we use the substitution u = v/x, we first note that u > —3, hence by (2)

B r—3yr+8
/g(x)dx B /2ﬁ(w—4ﬁ+5)(ﬁ+3) du

/ u? — 3u +8

= 3 du

u=yz (W —4u+5)(u+3)

= In(vz +3) + Arctan(yz — 2), x> 0.

Example 2.15 Calculate the following integrals
1) [ 3z sinz?dx,

3
T
9) [ g,
) V14 z?
3) [z?e " dx,

COS ™

4) f*dﬂ?,

2sin® z

5) [ (;xelf‘”‘c2 + 2 61’w> dx.

A. Five integrals.

D. (1), (2) and (4) are calculated by using a convenient substitution.
(3) is calculated by partial integration.

(5) is calculated by using a substitution and then by either applying the result from (3) or by
partial integration.

I. 1) Putting t = 22, dt = 2z dz, we immediately get
(2 3 : 3 2
3w sin (2°) do = = sintdt = —= cos (z%) .
2 Ji—p2 2
2) Putting t = 1 + 2, dt = 423 dz, we immediately get

a3 1 1 1
T =z ~dt= - /11 2.
/\/1+l’4 4/t—1+w4 \/Z 2
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Calculus 1c-3 Integration by simple substitutes

3) By repeated partial integration we get
/x2 e %dr = 2. (—e_x) — /2x~ (—e_’”) dx
= 2 —2we "+ /26_9” dz
= —(x2+2x+2) e ",

4) Putting t = sinz, dt = cosz dz, we immediately get for = # pm, p € Z that

1 1 1
/%dwz—/ A=
2sin” x 2 Ji—sinz 4 sin“x

5) Here we can take advantage from the result of (3):

/{xel_wz —&—x?el_w}dx = /xel_w2 dac—l—e/xze_”” dx

1
= ——/ etdt+e{—(z° +2z+2)e "}
2 t=1—x2
— _1 1—x? _ 2 1—x
= —ge (x° + 22+ 2)e %,
C. TEsT.
1)

2)
d (1 1 1 1 x3
_ _1/1_’_$4}:_._.7. 3 — .
d${2 2 2 Vi4at V142t
3)
d 2 —x —T 2 —x 2 —x
d—{f(x +2242)e "} =—2z+1)e * + (2 + 2z + 2)e” " =z’
x
4)
i _l 1 __1 —2 o 1 cosx
dx 4 sin’zf 4 \sin’z - 2sin’z’
5)
d Lo 2 1-z _ Loy 21—z
dx{ 5¢ (z° 4+ 2z + 2)e = 5¢ (—2x) + z%e

— 2 —
= ze'™" f el

In all five cases we get the corresponding integrands. Q.E.D.
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Example 2.16 Calculate the following integrals

1)

/{ 2 - i + L }dm |£L’|<1
V1—922 V22+9 a?4+2x+46 ’ 3

2)

3 4 2 1, 5
Tt mre -2 ™ k>3

A. Integrals.

D. Split the integrals and then choose a convenient substitution.
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Calculus 1c-3 Integration by simple substitutes

1
I. 1) For |z| < 3

/{ 2 3 N 1 }d
— X
V1I—=922 V22+9 2?4246

/#dx—/deJr/;dm
V1 —9z2 Va2 49 22 +2x+6

/m ws— /< 1>+5dx

=3 Arcsm(3x — 3 Arsinh

wl&

= g Arcsin(3z) — 3 Arsinh (

w| s
~—

\/_/ 241 1+t2
z+1
Arctan .
(%)
C. TEsST.
d

2 1 1
. {§ Arcsin(3z) — 3 Arsinh (g) 75 Arctan (%) }
1
3

3 /1- (32)2 \/1+(f)2 Vi <:c+1>2 V5
3 V5
2 3 1
T VI-9022 \/94—3:2+ (z+1)2+5
2 5 L Q.E.D.

= - +
V1—=922 9+a2 a?+22+6
2) For |z| > 3,

3 4 2
/{m+2x+6_9—x2}dm
:/7¢§__9dx+/xi%dx+/ﬁdx
t_g\/;jdt+21n|x+3|+/é{xi3—mi?)}dx
HOE =

r+3
—31H‘£L‘+\/ ‘ ln\x+3|+ Injz —3]—31n3.

=3In

1
1 +21n|x+3\+§1n

Note that x + V22 — 9, x + 3 and = — 3 are all negative, when z < —3.
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Calculus 1c-3 Integration by simple substitutes

C. TEST By differentiating we get

{3ln|x+\/ |+ ln\x+3|+ In|z— 3| — 31n3}

1 T 5 1 1 1
=3 1+ et —
x+\/332—9< \/x2—9> 3z+3 3x-3
3 \/xzfQJrSU+ 2 +1{ 1 1 }
r+vVz2 -9 Vaz2-9 r+3 3

l‘—37$—‘r3
B 3 . 4 lz+3—(z-3)
V22 —-9 2x+6 3 22 -9
4 2
S - Q.E.D.

2 -9 20+ 6 9 — a2

Example 2.17 1) Calculate the integral

1-2yx
/1+3\/_dac x>0,

by introducing the substitution given by t = \/x.
2) Calculate the integral

T+ 2xr+3 dae :c>73
4/—2x+ ) 2,

by introducing the substitution given by t = v/2x + 3.

A. Two integrals.
D. Introduce the indicated substitutions.
I. 1) The substitution ¢t = \/z, x > 0, t > 0, is monotonous, z = t?, and dx = 2t dt. Hence
/1—2\/_ 1-2t :/ 2t—4t2dt.
143y t=yz L +3t t=yz 1+3t

A division by polynomials gives

2t — 42 4+10 10 10 1
1+3t 3 9 9 27 t+1’

hence by insertion,

1-2 410 10 1
/ L=y, / {—t+—0—0~—1}dt
1137 AP L T |

1 1
= —gt2+—0t——1(3t+1)
3 9 27 =z
2 10 10
= —Zz+— In(1
3¢+ g Voo In(1+3va).
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Integration by simple substitutes

C. TEesT. By differentiating we get

d 2 10 10
3

dx 9 27

_|_

_|_

Wi Wi Wl

_|_

143V

—_

ool»—u

1+3yr

+ — vz — = In(1+3yx)

L PR
x 1+3yx
143y -1

|

{-2-6Vr+5} =

2
3
1
3

1
NG
+5 1
3 143z
3—6yx  1-2yx
E.D.
14+3y/z 1+3Vz Q

3
2) The substitution ¢t = 2z + 3, x > —3 t > 0, is monotonous, and t* = 2z + 3, thus « =

1

2
T+ 22+ 3 e / 5
Kzexl t=Y2z73
- /2;: 2243

7
C. TEsT. By differentiating we get

1
S (2w +3)7 +

3
—tt4 — 3 and dx = 2t3 dt. Then by insertion,

t
22 ot

1 2
(t5 +2t* — 3t%) dt = [?H + 5755 —t‘ﬂ

d (1 2
%{?(2x4r3)1+5(23ch3)?1 (a:+3)3}
17 5 25 . 3 :
= Z-(2 24222 i.2-2(2 1.9
74(9@4—3)4 +54(x+3)4 4(a:+3) 1
_ 1 2z + 3 \/2x—|—3_§ 1 T+ V2r+3
T 2922 +3 V22 +3 2V22+3 VPx+3

Example 2.18 1) Calculate the integral

/ sinh?® ¢ dt

by introducing the substitution given by u = cosht.

2) Let x = sinht¢. What is cosht expressed by x?

3) Calculate the integral

——dz
V1422

by introducing the substitution x = sinht.

t=Y2z+3

2
- (22 +3)% — (22 +3)1.

Q.ED.
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Calculus 1c-3 Integration by simple substitutes

A. Two integrals and an hyperbolic relation.

D. 1) Introduce the indicated substitution.
2) Use that cosh? ¢t — sinh?¢ = 1.

3) Introduce the substitution z = sinht.
ALTERNATIVELY one can apply the substitution ¢ = 2.

I. 1) Since
sinh®¢ = sinh® ¢ - sinh ¢ = (cosh? ¢ — 1) sinh,
we get

/sinh3 tdt = /(cosh2 t —1)sinhtdt

3
= / (xz—l)dx:{x——z]
r=cosht 3 xz=cosht

1
= 3 cosh®t — cosh t.

C. TEsT. By differentiating we get

dr |3 3
= (cosh?t —1)sinht =sinh®*t  Q.E.D.

i{lcosh?’t—cosht} = 1'3(:osh2t-sinht—sinht

.
s &
= F
| \" Y
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Calculus 1c-3 Integration by simple substitutes

2) Since cosht > 0, we get

cosht = +V1+sinh?t = /1 + 22.

3) The substitution = = sinh¢ is monotonous, ¢t = Arsinh z, and dz = cosh ¢ dt, hence

/ x3 d / sinh® ¢ Wt dt
" dr = — . cos
V14 22 t=arsinh 2 \/1 4 sinh® ¢
- / sinh® ¢ dt
t=Arsinh T

1
= 3 cosh®(Arsinh x) — cosh(Arsinh z)
1 3
= g{\/1+x2} — V1422
1 —
= g (1'2 — 2) 1 + ZEQ.
ALTERNATIVELY apply the substitution ¢t = 22 + 1. Then
a3 1 x? 1 [22+1-1
——dr = - | —— 2zdr == | ——d(2*+1
/\/1+x2 2/\/1+x2 2 V1 + a2 ( )

1 1 12

= —/ {\/E——}dt:—{—tg—%%}
2 t=2241 \/E 213 t=x2+1
1 1

= g(x2+1)\/x2+1—\/x2+1:§(x2—2)\/1+x2.

C. TEsT. By differentiating we get

d(1,,

iy S — M1 2

dx{S( ) +z}
1 1 T
=--2r-V1+224 - (2% -2) ——
3 3( >‘/1+JZ2
1 1
= —— {201 +2°) + (2% - 2)x
3 VT ) 2y
L1 forsontaat—or)— L QED
=- ——{2r+2° +2° -2z} = —— E.D.
3 V1 +z? V1+ a2

Example 2.19 1) Let x =sint, t € },g , g[ Find tant expressed by x?

2) Calculate the integral

V1— 22
<~ _dx, —l<z<1,
(1 —22)2

by introducing the substitution x = sint, t € ]—

o]
0ol

A. Find a geometric relation. Then calculate the integral.
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Calculus 1c-3 Integration by simple substitutes

D. Follow the guidelines given above.

I. 1) Whente} 72r 2{ we have cost > 0, thus
sint sint - T

- =+ = :
cost V1—sin?t  V1—2?

2) The substitution « = sint, where ¢ € }—g , g [ and x €] — 1,1[, is monotonous and
t = Arcsin x, dx = costdt, cost > 0. Then by insertion,

V1—22 1 —sint
(1 -z ) t= Arcsin T (1 — Sin t)2
t 1
= / JrC—048~costdt:/ ——dt
t=Arcsin © COos t t=Arcsin T COos t
— [tant S
= [ an ]t:Arcsin r = ﬁy
where (1) has been applied.
C. TEeST. Let © €] — 1,1[. Then by differentiation
d X v - ‘rQ 1— z2
% V1 — 22 o 1— 22
M 1132 V1—a22

Example 2.20 Calculate the integral

[

) .'1,'2—17

T +5
by applying the substitution given byt = /x + 1.

A. Integration by substitution.
D. Apply the substitution ¢ = v/z + 1, and then calculate the integral.
I. Since t = v/x +1 >0 for x > —1, we have z = t?> — 1, and thus dz = 2tdt. Then by insertion

e
T+5 (x+1)+4 t:\/mtz-i-ﬁl

[
t=TF1 te+4

1

2z +1 - 2/ -
t=/ZF1 <t)

5 +1

vV 1
2V + —4Arctan( 332+ ), x> 1.

-2t dt

dt
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Calculus 1c-3 Integration by simple substitutes

C. TEsT. We get for z > —1 by a differentiation

20Tt (Y5}

1 1 1 1
— 4. Lo
vo+1 T+ 1 2 ) 4 x+1
5 +
), 1
Vz+1 95+1_|_1
4

1 {1 4 } 1 z+5-4
VTS t+5) Vr+l z+45
1 r+1 Vo +1

= . = .E.D.
Vve+1 xz4+5 r+5 Q
v —3
3: dx, T > 3.

Example 2.21 Calculate | P

A. Integral, where the integrand contains a square root.

D. Use the principal rule: Whenever an “ugly” term occur, then call this something different by a
substitution.

I. Putting u = v/x — 3, x > 3, we see that u > 0 is monotonously increasing in z, and
z=u?+3, dxr = 2u du.

Then by insertion

vr—3 U
= ——— 2udu
Tz+6 :m(uz+3)+6
2 _
= 2/ wd“
=vx—3 u?+9
9
= 2 1—————¢d
/: IS{ u2+9} B
du
= [2ul,_z=3— —
w=\z-3 u
1+(3)
v —3
= 2Vr—3 6Arctan( x3 ), x> 3.
C. Test. If

fl@)=2Vz -3 - 6Arctan<\/x$Tg), x> 3,
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then by a differentiation,

¢£f§_ '1+<V;3)2fw%3

flz) =

3

1 9 1 1 9
- _ ) — 1—
ve—3 94+zxz—-3 o -3 \/x3{ x—|—6}
1 r—3 Vr-—3
Vr—3 z+6 x+6’

which is precisely the integrand. Q.E.D.
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Integration by advanced substitutions

3 Integration by advanced substitutions

Example 3.1 Calculate the integral

=

by introducing the substitution given by t = /x — 1.

dx, z>1,

A. Integration by substitution.

D. Follow the hint, i.e. we call an unpleasant term something different.

I If we put ¢t = /x — 1, then x = t> + 1 > 1, i.e. dx = 3t% dt. Then by insertion for x > 1,

xT

/W

dx

1
/ — (t*+1) 3% dt
= Yz=T b

1 3 3
= 3/ (t+—2) dt—[—tQ——}
t=Yr—1 t 2 t t=r—1
= Sw-nio 2 =320
2 (x—1)s 2 Jx—-1
C. TEsT. We get by a differentiation,
d 3 x-31_ 3 11 -3
de \2 Yoz—1) 2 Yo_1 2 (xfl)%
1 -1
LB o@sd) o w o app,
2 (x—1)3 (x —1)3

Example 3.2 Calculate the integral
/ _ d >0

x x
Vr+ ’

by introducing the substitution given by t = /.

A. Integration by substitution.

D. Introduce the substitution, then decompose the integrand and finally calculate the integral.

I. If x > 0, then t = ¢z > 0 is a monotonous substitution, » = t%, and dz = 6t° dt. Thus

/ 6t°
t= ﬁ t3 + t2

:/t:

243

613

dt

\/Et—Fl

1
6/ {t2t+1—}dt
t=Yz t+1

— 3t 4+ 6t — 6 In(t + 1)]
2v/x — 3z + 6z —61In(1+ Vz).

t=x
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C. TEST. Let
flz) =2z —3Yx+6Yz—6Im(1+ Vz), x>0
By a differentiation with respect to x > 0 we get

YRS S T R S

N x 1+ =«
1 1 1 1 1 1 1 1 5
= _ T2 +x§> T 2 — (x§ +$§>(I;_§ + (m? —|-(I;§) xr 6
\/E+\3/§{<

. .76
14+ x5
L R a ET S R Ry
= 76 —xT8 —x x T2 —x
Vo + Yz
1
= — .E.D.
Vo + x Q
Example 3.3 Calculate the integral
1
/— z dx, x>0,
r\r+1
by introducing the substitution given by t = i 1
x

A. Integration by substitution. There may also occur a decomposition.

D. Check the substitution. Then apply it and calculate the integral.

1
I. When z > 0, we see that T o1 > 0 is increasing in x with the range |0, 1[. Therefore,
z+1 z+1
the substitution ¢t = f_ 1 can be applied, and we get
\ =
1 2 2y
= —1= , dr = ——= dt, t€]0,1].
T e 1- 2 T a-e)e 10,1]
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Integration by advanced substitutions

Then by insertion for x > 0,

[ = Iillj o
:/ 12t2d_/t=m{_% H%}dt
: \F oy
C x+1
- xil
= (VLR —n{(ar T v
= 2In(Vz+1+Vx).

C. TEsT. By differentiation we get for « > 0,

d 1 1 11
S om(Vr+l - -
i (20 (T vE)) = ﬁM{Q Ttavef
B 1 VEtVol 1] QED
Vitl+yz Ve+l-x z\z+ S
Example 3.4 Find an integral of the function
1 1 ’ 2 ’
x + T +
= N -2 Y —1 .
/(@) (z+2) < x—|—2> +< x—l—l) ’ DR

A. Integration.
D. A substitution followed by an integration.

I. We shall apply the monotonous substitution

L jx+1 . 72u4—1
= x+2€]0’1[’ le. &=——07,
and
Sud(1 — ut) + 4u(2ut — 1)
de = =l du
2 —2u* +2ut — 1 4ud
= 4u®. du = du.
ST A e T a2 ™
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1
Since +2:1—u4,weget
1 +1 ’ +2 ’
4x 4x
\/ -2 d
/([I)+2)2 < x+2> +< x+1> *
4u?
_ o AN2 3 -3 .
_/24%;(1 u')? {u® =240’} (1_u4>2du

4
{4u6 —8u’ + 4} du = [? ul —2ut + 4u]

[
x+2
7
:ﬁ Jr+1 _2'x+1+44/x+1.
7 42 x4+ 2 T+ 2
C. TEST. By a differentiation we get

3 -3
z Jr+1 1 _ 2 ) 1 Jr+1 1
2\ V42 (z+2)2 (z+2)2 4 x+2 (x+2)?

3 3
1 r+1 T+ 2
(z +2)2 (4x+2> _2+<4x+1> - QED.

04

e

— 4/z+1
U=1/ 242

ENTEN
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Calculus 1c-3 Integration by advanced substitutions

Example 3.5 We shall here eventually calculate the integral

(1) /,/Sfxdx, 0<z<3.

1) Prove that t = 3L has an inverse function x = @(t). Find the domain and the derivative of
V3—=z

p(t)-
2) Introduce the substitution x = ¢(t) into (1), and then calculate the integral.

A. An integration with some guidelines.

D. Follow the guidelines.

0TTos 1 15 2 25 3

x

Figure 1: The graph of the function ¢t = 3 x , x €10,3].
V33—

x
I. 1) Let « € [0,3[. Then 3 is continuous. Since the numerator is strictly increasing and the

denominator is strictly decreasing, we conclude that the function itself is strictly increasing,

X
hence strictly monotonous. This means that ¢t = Fy has an inverse function ¢(t), the
V3—=x

domain of which is the range [0,4o00[ of t = 3L, x € [0,3]. By squaring followed by an
V3—z

inversion we get

3—x 3 1 . 3 1 1+ t2
=——1=— .C. — =1 _ = —
x x 2 g +t2 27
hence,
3t2 3
x:¢(t):1+t2:3_1+t2
where
6t
IR
T
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Calculus 1c-3 Integration by advanced substitutions

2) When we introduce the substitution 2 = p(t) into (1), we get

/ /t: _ t-'(t)dt

612

g

2%
- /\/ b (1+12)2 di

3

dx

dt

—1

3t - 3/ 1. ——=dt
1+t2 =/ =7 1+ ¢2

[ x
3./
3_
= —xix—i-?)Arctan(,/S%)
3

+1
-

= 3Arctan <\/Z> —Vz(3—1x), x € [0,3[.

C. TEST. When z €]0, 3] we get by differentiation

%{3Arctan(\/z>_ m(S—x)}
"= %Flii_ziﬁ—% =

- —m\/i 3—2x
3—z)2 2 z(3 — )
) \F 32
3—a)2 2 z(3 — 1)
-1 B-G-2)=—u = -2
Zﬁ Va3 —1) 3—x

where we use that z > 0. Q.E.D.
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Example 3.6 Let the function g(x) be given by

/X

1) Prove that g(x) is monotonous and find the inverse function of g(z).

2) Denote the inverse function by g~1(t). Prove that

d, at
a0y =g e

3) Calculate the integral

1
/—,/ z dx, x>0,
z\x+2

by an application of the substitution given by

X
x4+ 2

A. An integration with a disguised substitution.
D. Follow the hints in the guidelines.
I. 1) The easiest way is simply to show that the equation

T
T+ 2

(2) t= €10, 1],
has a unique solution z > 0, and find this solution.

Since t > 0, we see that (2) is equivalent to that equation which is obtained by squaring,

.2 x x+2—2_1 2

t+2 z+2 0 z+2
from which
2 2
=1t dvs. 2=_—"—
T+ 2 S
and thus
_ 2 2=2 e >0 for t €]0,1]
Tioe T 1o, o T
and the claim is proved.
2) We have according to (1),
2t2
=g t)= —— t €]0,1].
r=g )= el
Thus we immediately get
dr d , _ 4t(1 — t2) — 2t2(—2t) 4t
_:_{g 1(t)}: 212 = 2)2°
dt — dt (1—1t2) (1—1t2)
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T
T+ 2

1 z 1 —¢2 4t 2
= 2dx: 572 -t 1—t22dt: —1_t2dt
z\ x+ t=/223 ( ) t=y/222

1 1 t+1
I e X |
=/ t—1 t+1 t—11{],_ —=

z+2

3) When we apply the substitution ¢ = , it follows from the above that

=1n<(—vm+2+ﬁ)2) —=21In(Vz +2+z) —In2

r+2—2x

:2Artanh( * >, x> 0,
T+ 2

where we have used that ¢ = €10, 1] by the above.

T+ 2
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Calculus 1c-3 Integration by advanced substitutions

C. TesT. We get e.g. by a differentiation

d T 2 d x

— < 2 Artanh = —

dm{ et <\/x+2)} T dx< x+2>
+2

T

d x x+2 1 d 2
= 2) — (] = . R | P
(@+ )dx( :E—|—2> 2 T dx{ x+2}
2
_ @42t e 2 1 [ Q.E.D.
2x x+2 (42?2 2z \z+2

If we instead choose the integral

fl@)=2n(Ve+2+Vz) —n2,

then
df _ 2 (1 1 +1 1)_\/37—1— —\/E( 1 L 1)
dt — Vrt2+yz\2ve+2 2vz)  w+2-z \Vzt2 a
1 T T+ 2 1 T T+ 2
= —<{1- —1,== -1
2{ 30—}—2+ T } 2 x+2{ " T }
1 1 T 1 x
- .= — ) == .E.D.
2 x x—|—2{ rH(z+2)} x\ x+2 Q
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Calculus 1c-3 Decomposition

4 Decomposition

Example 4.1 Write the following polynomials as a product of polynomials of first degree and of second
degree without real roots:

(1) P(z) = 2* — 32 — 622 + 8z, (2) P(z)=2*—1.
Decompose the fraction

P(z) 2?+3z+38
Q(z) 23 —22—2z

Write a MAPLE programme which gives the decomposition.

A. Splitting of polynomials followed by a decomposition.

D. Guess the roots in (1) and (2). In the latter fraction we factorize the denominator and then
decompose.

I. 1) It is immediately seen by inspection that the roots are x = 0 and @ = 1, hence z(z —1) = 22 —x
is a divisor in the polynomial:

xt — 323 — 627 + 82 = x(x — 1)(2? — 22 — 8).
Since 22 — 2 — 8 = (x — 4)(x + 2), we get the factorization
xt — 323 — 627 + 82 = (x + 2)a(x — 1)(z — 4),

and the four simple roots are —2, 0, 1 and 4.

2) By a small rearrangement we get

1= ()’ —1= (2 =1) (2 +1) = (@ + D@ —1) (2* + 1),

The simple, real roots are +1, and we have furthermore the two simple, complex roots +i.

(z+1)(z —1)(2® + 1).
3) First find the factors of the denominator Q(z),
Qz)=a3—2*> -2z =22’ -2z -2)=z(x+1)(z - 2).

Since the numerator P(x) has lower degree than the denominator Q(x), we get by the standard
procedure that

P(x) 2?2+ 3z+38

Q) — (v+1z(z—-2)

(=12 +3(-1)+8 1 02+3-04+8 1
(—1)(-1=2) z+1 (0+1)(0-2) =
224+3.2+8 1
2+1)-2 z-2
1-3+8 1 8 1 446+8 1
- 3 241 -2z 6  x—2
2 4 3

z+1 a:+x—2'
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A corresponding MAPLE programme could be
f = (x72+3%x+8)/(x"3-x"2-2%x) ;

2?2 +3z+8
x3— a2 — 2

convert (f,parfrac) ;
4 2 3

x+x+1+x—2'

Example 4.2 Decompose the fraction

P(x) 1
Qz) a3—a2+a

A. Decomposition.
D. Dissolve the denominator into its factors and then decompose.
I. Since

2
s et o) )

we conclude that the structure of the real decomposition is

P(x) 1 a bx +c¢

Q(z) =x(x2—z+1) E+x2—x+1’

hence by the standard procedure we get a = 1. Hence by reduction,

br +c 1 1
2?2 —x+1 (@2 —z+1) =
1—x2+x—1_ —z+1

(@2 —z+1) a2-z+1

When x # 0 we get

P(z) 1 1 —z+1

Q(x) x3712+x_:£+x27:c+1'
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Example 4.3 Consider a fraction

P(z) P(x)

Q(z)  (z—1)2*(z—2)

where the degree of P(x) is at most 2, and where the numerator and the denominator do not have
common factors.

1) Prove that it can never happen that

2) Assume that

2?2 —x+1 _ c1 n Co
(x—12(z—-2) (z—-12 -2

Find ¢; and cy.

3) When we put ¢1 and co in the equation (2), we get a false identity. Show this and explain what is
wrong.

A. Investigation of a decomposition.

D. “Decompose” unconsciously and then find out what is wrong.

LANSSPAR
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Calculus 1c-3 Decomposition

I. 1) We miss one term of the type L, where
(x —1)?
P(1)
= —==—P(1 0.
2) By the usual decomposition technique we get
1-1+1 . 22-2+1 5
|l = = — CQ = ———— — O.
T2 : 2T T (2-1)2
Then by a rearrangement,
2 —x+1 1 3

C—12—2) @12 -2
_ (@2 —x+ 1)+ (z—2) 322 —22+1)
(e — 12z —2)
—22% + 62 — 4 2

T (e-D@2-32+2) z-1
All things considered we finally get
2 —z+1 _ 1 2 n 3
(r—1)2z-2 (z—-12 =z-1 z-2
3) and we see from this that we have forgotten the term

c 2

x—1  z-1
in (2).

REMARK. Roughly speaking 6—112 shades the terms of lower order Ll’ when we apply the
x — x

standard procedure on the factor in the denominator under consideration. The message is that
one should always first reduce and then repeat the method on the reduced expressions, in which
the degree of the denominator has become smaller. ¢

Example 4.4 Decompose the fractions

P(z) 2®+3z+8 5
Qz) 23 —22 -2z’ (2)

P(z)  2a%+4a2* — 222
Q)  at-1

A. Decomposition; in (2) the degree of the numerator is bigger than the degree of the denominator.

D. Factorize the polynomials of the denominators and decompose by the standard procedure. In (2)
we first perform a division by polynomials.

I. 1) When the denominator is factorized we get
23 —a? —2r=x(2? — 2 —2) =z(z+ 1)(z —2).
Thus, if z # —1, 0, 2, then
P(z) 2*+3z+38 z? + 37+ 8 8 2 3

Qz) a3 —22—-2r w(z+1)(z—2) _§+x+1+x—2'
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2) Here the denominator is factorized in the following way,
2t —1=(2?2 - 1=@?-1)(@*+1)=(z - )(z+1)(2* + 1).

First perform a division by polynomials, then use the trick of first decomposing after 2 and
finally after x. For x # £1 we get

Pz) 228 +a*—222 2222t -1)4+(a*-1)+1
Q(z) xt =1 B xt =1
= 22 +1+ !
(z2 = 1)(z2+1)
1 1 1 1
= 92414+ .
Tty E 1T 2
1 1 1 1
= 22414 . _Z.
Ty o D) 2 21
o2 pqa Ll L1 11
— €T — . — — . _— e —
4 z—1 4 z+1 2 22+1

Example 4.5 Assume that the polynomial
Px)=a" +ap_12" '+ +arx +ag
has the roots vy, as, ..., a,. Prove that

an-1=—(a1+as+-+a,) and ay=(—1)"a; - as- - a,.

A. A theoretical investigation of a polynomial. When n = 2 the formulae are known from high school

D. Write P(z) in two ways and identify the coefficients.

I. By a simple combinatoric argument we get

Pla) = (z—a)(z—az)-(z-an)

— €T _(a1+...+an)xn_1+...+(_1)na1...an
= 2?4 ap_12" 4+ a1z +ao.
Since the coefficients of two identical polynomials agree we get

Up—1 = *(Oél‘i‘"“i’an) og apg = (71)71@1"'0(”,

i.e. the sum of the roots is always equal to —a,_1, and the product of the roots is always equal to
(71)”0,0.
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Example 4.6 Decompose the fraction

4?41
z(x?+1)2°

A. Decomposition.

D. Use the standard method and reduce.

I. The polynomial of the numerator is of lower degree than the polynomial of the denominator, so if

we decompose with respect to x followed by a reduction we get

B +a?+1 1+x3+x2+1—(x4+2x2+1)
x(z? +1)2 x x(z? +1)2
1 x3—x2+x_1
oz (z24+1)2 =z
1 a1 1
oz ox24+1 0 (224 1)2
C. TEsT:
1 l.x 1 1

E+x2+1_(x2+1)2

PR B
x(z? +1)2
r(@?+1)— (22 +1)+1

= @1y {@+12+ (1 - 2)a@® +1) — 2}

1
= 7){$4+2$2+1—$4—$2+:L‘3+.’17—$}

x(x?+1
4z +1
x(z? +1)2

Example 4.7 Decompose the fraction

14z + 23

A. Decomposition.

D. Use the standard procedure and reduce.

Q.E.D.

53
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I. The polynomial of the numerator is of lower degree than the polynomial of the denominator, hence

14z + 23 o 14-(-2)+23 14z + 23 14(-2) + 23
@+ D+2?  @+0@+2? " @+D@+2? (@d+1)(z+1)7?
- 1 (14z + 23) + (2® + 1)
T (#+2)?2 (22 + 1)(z + 2)2
B 1 2?4+ 14r+24 1 x4 12
ICER (I2+1)(I+2)2__(ﬂ:+2)2+(:172+1)(:r+2)
_ 1 2 (z+12) —2(z% + 1)
T (2422 242 (22 +1)(z +2)
1 222 —xz — 10
R I R PR Y gy
B 1 2 (x+2)(2z —5)
T w2 iy @iD@+2)
1 2 2z — 5

(x+2)2+x+2_x2+1'
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C. TEsT:
1 2 2¢ — 5
C(x+2)2 R R
B 1
(@2 1)(
1
T @+ 1) (z+2)?2
1
T @+ 1)(z+2)2
1

(14z 4 23)

Q.E.D.

T @+ D@ +2)?

Example 4.8 Decompose the fraction

222 + 2z
(x —1)2(z+3)°

A. Decomposition.

D. Apply the standard procedure and reduce.

s D2 )+ 2) - 22 - 5)( +2)7)
{—2® —1+22% +42® + 22 +4— (22— 5)(2® + 4z +4)}

{22° 4 32® + 22 + 3 — 22° — 82” — 8z + 5z* + 20z + 20}

I. Since the polynomial of the numerator is of lower degree than the polynomial of denominator, we
get by the standard procedure and a reduction that

3

2 2
(x—1)2(z+3)  (x—1)2 4z+3 (x —1)%(z + 3)
1 3 1 2x2+2x—x73—%(171)2
T wotizast (@ — 12z +3)
3

T o2 T dr43 T w1213

1 3 1 1804123043

o (z—-12 4243 4 (z—-1)(z+3)

1 51 .31

o (z—-12 4z2-1 42+3
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Example 4.9 Decompose the fraction

222 + 2z
(x —1)2(z2 +3)’

A. Decomposition.

D. Apply the standard procedure and reduce.

I. Since the polynomial of the numerator is of lower degree that the polynomial of the denominator,
we get by the standard procedure and a reduction that

222 4 2x - 1 +2x2—|—2fc—x2—3
(r—1)2(z2+3)  (z—1)2 (x —1)2(x2 +3)
_ 1 n e+ 2 —3
(x—1)2  (z—1)2(22+3)
_ 1 (x —1)(xz+3)
(=12 (z—1)*(2*+3)
1 r+3
T @-12 " -2 +3)
B 1 n 1 +m+3—x2—3
(2 —1)2 x4l (z—1)(22+3)
1 1 T
B (ac—l)2+a:—1_x2—|—3' 0

Example 4.10 1) Prove that if © = « is a treble root in the polynomial P(x), then

(3) P(a) = P'(a) = P"(a) = 0.

2) Conversely, prove that if (3) holds, then x = « is a root of P(x) of at least multiplicity 3.

3) The condition (3) holds for every root, the multiplicity of which is bigger than or equal to 3. How is
it possible by means of the derivatives of P(x) to decide whether the multiplicity of the root x = «

is precisely 37

4) The figure 3 is in this connection not special. Formulate the general result.

A. Multiplicity of a root of a polynomial.

D. Go straight to the general case, because n = 3 is only a special case.

I. Let z = a be a root of the polynomial of multiplicity n € N, i.e. there exists a polynomial Q(z),

such that
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Then by successive differentiations,

Pl(z) = n(z—a)" Q)+ (z—a)"Qi(x),
P'(z) = nn—1)(r—a)"?Q() + (z — )" 'Qs(x),

P () = nn-1)-2(z —a)Q) + (z — @)?Qn_1(2),
P(")(gj) = nlQx)+ (z — a)Qn(x),

where Q1 (), - -+, Qn(x) are polynomials occurring by the differentiations. Due to the factor © — «
it follows that

P(a) = P'(a) = P"(a) = --- = P""V(a) = 0,
and

P™(a) =n!Q(a) #0.
Thus we have proved that if x = « is a root of multiplicity n € N of the polynomial P(x), then
(4) P(a)=P'(a)=---=P" V(a)=0 and P™(a)#0.

Conversely, if (4) holds, then z = « is a root (because P(a) = 0), hence x = a must have a
multiplicity m € N. From the result above follows that

Pa)=Pla)=--=P"™ Da)=0 og P"™(a)#0.
Since we assumed (4), this is only true if m = n. Thus,
e r = « is a root of multiplicity n € N in the polynomial P(x), if and only if

Pla)=P(a)=-=P" D(a)=0 oand P"™(a)#0.

REMARK. Another and more direct method is to develop the Taylor expansion from x = «. Then

P(z) = P(a)+ ff‘) (z—a)+ -+ % (z—a)" !
+P(:!(a) (x —a)" +
It follows immediately, that if
P(a)=P'(a)=---=P" Y()=0 and P™(a)#0,

then (z —a)™ is a divisor in P(z), hence x = a is a root of precisely order n, because P(™)(a) # 0.
On the other hand, if x = « is a root of order n, then the Taylor expansion above shows that

Pla)=P(a)=-=P" D(@)=0 and P"(a)#0. 0
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Example 4.11 1) Find all real roots of the polynomial

Qz) = 2t — 223 + 222 — 2z + 1.

2) Decompose the den rationale function

P(x) 423 — 2% — 4z +5

Qr) at—2a3+4+222-20+1

A. Decomposition.

D. Factorize the denominator and then decompose.

I.

1) It follows by inspection that

Qz) = a*—22° 4222

—2r+1

(z* —22% + 2?) + (2% — 22 + 1)

(x% 4 1)(z — 1)%

Hence, the double root z = 1 is the only real root.
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Calculus 1c-3

Decomposition

2) Since deg(P) < deg(Q), we get by (1) that the structure is given by

P(zx) 4da2®—2®>—4z+5 o« n b +cx+d
Qlz)  (224+1)(z—-12 (z—1)2 2—-1 x2+1

We multiply this equation by (z — 1)? and then take the limit 2 — 1. Thus

1
a={4-1-4+5)=2

Then by a rearrangement,

b +cx+d _ 4353—962—493—1—5_ 2 -x2+1
xr—1 2241 (22 4+ 1)(x —1)2 (x—1)2 22+1
403 —x? —dx +5—22%2 -2 4o —32% — 42+ 3
- (@ + 1)@ — 1) T (@)1
dr(x? —1).3(22 1) da(z+1)—-3(x+1)
T @+ D)@-12 @+ D@-1)
4 +x -3

(@2 +1)(z—1)"
This equation is multiplied by = — 1, followed by the limit process x — 1. Then

1
b=g{1+1-3}=1.

By a rearrangement,
cr+d 4a? + 12 —3 1 2?+1 dat4ax-3-22—-1
24+1 (224 D(xz-1) z—-1 22+1  (22+1)(z—1)
32 +a—4 (Bz+4)(x—1) 3x+4

(2 +1)(z—-1) (2+1D(z—1) 22+1
When all things are put together we get for x # 1,

P(z) 4o —a? —dx4+5 2 n 1 +3x+4
Qz) xt—223+222-2x+1 (x—1)2 2z—-1 2241’

REMARK. Decomposition is boring in itself. It looks like there is missing a question, in which

we shall use the decomposition. We shall here add the task of finding an integral of the fraction.

This is here

/ 43 — 22 —4x + 5

d
xd — 223 + 222 —2x +1 v

2 3
:—m+ln|x—l|—|—§1n(x2+1)—|—4Arctana:, z#1. O
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Example 4.12 Consider a proper rational function
P(z) P(x)
Qz) (z—o)(z—az)(z—a3)’
where a1, ag and az are the three different roots of Q(x). We put
Qi(z) = (z—a2)(z—as),
Q2(z) = (z—ai)(z—as),
Qs(z) = (z—a1)(z—az).

According to the theorem of decomposition there exist constants ky, ko and ks, such that

P(l‘) kl kg k'3
Q(x) x—a1+x—a2+x—a3'

1) Prove that

P(al) .
ki = . i=1,23
Qi)
2) Prove that
P(oy) ,
k'L Ql(a2)7 Z 7 7 3

3) One has a similar general result, when the denominator Q(x) can be written as a product of n
different polynomials of first degree. Formulate this general result.

A. Theory of decomposition; the standard procedure; Heaviside’s expansion theorem.
D. Apply the definitions and rpve the claims.
I. From

P(x) k1 ko ks

Qlx) z—aq 1'7042—'—({7043
follows for i =1, 2, 3,
1)

;= lim (z —ay) - P(2)
i a:l—nl( i) (x —aq)(x — ag)(z — g)

P P(q;
b P@) _ Pl
v—ai Qi(7) Qi(a1)
(you blind that factor in the denominator, which becomes 0 for x = a; and then put z = «;
into the rest), and
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2)
ki = zl—wi( z) Q(l‘) m1—>a¢ M Q/(Oéi)7

which is also called Heaviside’s expansion theorem.
3) If Q(z) = (x — a1) -+ (xr — ) has n different roots a;, and deg P(z) < n, we put Q;(z) =

M. Then
xr — Q4
Q) z—oo T =y’
where
gy = L) Plai) i=1,--,n

T Qi) Q)

The proofs are following the same lines as in (1) and (2) above.

Example 4.13 Decompose the fraction

3z2 -2z —1
(z—-1)2(@@+1)

x #£ +1.
A. Decomposition.

D. Use the standard procedure (blind the factor which is 0 for 2 = £1 in the denominator and insert
the chosen z in the rest). Finally, reduce.

I. First we note that the degree of the polynomial of the numerator is lower than the degree of the
polynomial of the denominator. Then we see that

327 —2r — 1= (z — 1)(3z + 1),

hence by reduction and the standard procedure of decomposition described above we get for = #
=+1,

C. TesT.
2 1 1
- -+ —1)2
e—1  z+i (x—1)2(:c+1){(x S+ 1)+ (@ —1)%}
1
{2 243?241
CEE S G
322 —2x—1

TSI
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Calculus 1c-3 Decomposition

Example 4.14 Decompose the fraction

3x? + 2z + 1
(x —2)(22 4+ 4z +5)

A. Decomposition.

D. Find the term % by the standard procedure.

I. The degree of the numerator is lower than the degree of the denominator. Furthermore,
P tdr+5=(x+2)*+1>1,

and the fraction is put on its canonical form. Then by the standard procedure,

3zt + 2z +1 B 1 322 +2z+1—2%—4x -5
@-2)@P 445  1-2 (w-2)@E 4z 1)
1 20% — 22— 4
B x72+(x72)(:172+4:17+5)

1 20+ 2

x—2+x2—|—4x—|—5'
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Calculus 1c-3 Decomposition

C. TEsT.

1 n 20+ 2
r—2 x224+4x+5
1

“ G T4z +D) {a? + 4o +5+ (v — 2)(20 +2)}

1 2 2
= 4 5422 -2 -4
(x—2)(x2+4$+5){x vt v—4)

_ 322+ 2z +1 Q.ED
~ (z—2)(22 +4a +5) S

Example 4.15 Decompose the fraction

122 +7
(x —1)(2? 4 62 +12)°

A. Decomposition.

D. Apply the standard procedure and then reduce.

I. The degree of the numerator is lower than the degree of the denominator. Furthermore,
22 +6x+12 = (z+3)* +3>3,

so the fraction is put into its canonical form.

By the method of blinding a factor of the denominator the coefficient of p— becomes
1247
1+6+12 7
hence
P(z) 120 +7 1 120 + 7 — (2° + 62+ 12)
Qz)  (z—1)(22+6z+12) x—1 (x —1)(2? + 62 + 12)
1 N —2% +6x—5 1 —z+5
oz —1 (z—-1)(@2+6x+12) x—1 224+6x+12
B o x—5
-1 x246x+12°
C. TEsT.
1 z-5 2?4+ 6x+12— (z—1)(z—5)
r—1 224+6x+12 (r —1)(22 + 62 + 12)

224+ 6x+12—22+6x—5
(x —1)(2? 4 62 + 12)
120 + 7

T (- 1)(22+ 6z + 12) QED.
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Decomposition

Example 4.16 Decompose

32 + 2245
(x+2)(22 =22 +5)’

T # =2

A. Decomposition.

D. “Blind the factors, etc.” and reduce.

I. Since 2% — 22 +5 = (z + 1)2 + 4 > 4, and the numerator is of lower degree than the denominator,

we know that the structure of the decomposition is

322 +2x+5 A n Bx+C
(x+2)(z2—-22+5) x+2 22-2r+5’
where
A _ [P t2s C3(=2)2+2(-2) +5
o222 +5]),_ , (-2)2-2(-2)+5
_ 3:4-445 13
 4A+4+45 137
hence
Bx+C 302 +20+5 1 3aP+42r45-2"4+20-5
2-2r+5  (z4+2)(@2—-22+5) z+2  (z+2)(22—22+5)

222 + 4z 2x

(x+2)(22—2x+5) 22—-22+5

The decomposition is

322 +2x+5 1 2x

(x +2)(a% — 2z +5) _x—|—2+x2—2x+5'
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Calculus 1c-3 Integration by decomposition

5 Integration by decomposition

Example 5.1 Calculate the integrals

1 1
1 — 2 2 —— dx.
() /47x2dxa T > 2, () /4+$2d$

A. Simple integrals.

D. 1) Decompose the integrand and integrate.

2) Substitute conveniently before the integration.
I. 1) By the decomposition (“blind the factor, etc.”) we get
1

1 1 1 1 +1
4—22 (z-2)(z+2) 4 r-2 4 z+2

Then for x > 2,

1 1 1 1 1
dr = - _ dr = = {1 2l —1 P
/4—x2 v 4/<x+2 x—2> v =g nfe+2f=Info+2[}

= i{ln(sc+2)—ln(x—2)}:ilni—i—§, x> 2.
2) When we substitutetz%,mz?t, we get
/ﬁdm = %/%dt:%Arc‘cant
= %Arctan(%), z eR.
C. TEsT.
1) If
f(m):ilnii—i:i{ln(sc—l—?)—ln(m—Q)}, x> 2,
then
f/(x)zl{ 1 - 1 }:1.@—2)—(%—}-2):_ 1 _ 1 7
4 z+2 x-2 4 (z+2)(x—2) x2—4 4—2a2
QED.

2) If f(z) = %Arctan(%), x € R, then

Q.E.D.

2 4+a2

Download free books at BookBooN.com

65



Please click the advert

Calculus 1c-3 Integration by decomposition

Example 5.2 Calculate the integrals

' 1 1
@) / Zrazrs™ @ / (422 4 9)° o

A. Simple integrals.

D. Analyze the denominators and choose convenient substitutes. When a factor in the denominator
consists of only two terms, the trick is to norm it such that the constant becomes 1.

I. 1) Since
2
xr+ 2
m2+4m+8=(x+2)2+4:4{1+<T_2|— ) }
we choose the substitution
z+2 T
t:T+ :1+I7 dvs. x =2t—2.
2 2
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universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
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Calculus 1c-3 Integration by decomposition

Then

1 1
7d =
/x2+4x+8 ’ /4{+<x+2>2}d$

2

1 2 1
= Z |:/ m dt:| fain = §[Arctan t]t:%ﬁ

1 2 1
= §Arctan (m; ) = §Arctan (1 + g) .

2) Since

2
2
4x2+9=9{1+<§x> }

we choose the substitution

2 3
t=—-ux, r = —t.

103 1
_ 13 ,
81 2 Ji—z, (14 ¢2)
1 t 1
= 4 Arctant
54{2(t2+1)+2 retan }t_gz
2(1}'
1 3 1 2
- - .3 4 Arctan| -
108 (2 )2+108 e an<3x>
1+ -2
3
2
_ 9'§$ + 1 Arctan zx
T 108 9+4z2 ' 108 3

L _r + ! Arcta 2
- . —— Arctan | — .
18 9+ 422 ' 108 37
C. TEST.
1) If

flx) = %Arctan (QUTH) ,

then

f(x) = Lo v ! = ! Q.E.D.
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2) If
1 x 1 2
flz) = 89T e + mArctan <§ :C) ,
then
Fla) = 1 1944 —w-8c 1 1 2
18 (9 + 422)2 108 2 \2 3
1+ (-2
()
_1o 94 6 1
18 (9+422)2 108 9+ 42
1 (9—42?) + (9 + 42?) 1
T8 (9 + 422)2 T (9 +422)2
Q.E.D.

Example 5.3 Decompose the fraction

P(zx) 42 — 36
Q(z) zt—2224+1°

Then calculate the integral
[

P
( dx, zel—-1,1L
Q(z)
A. A decomposition where the degree of the numerator is lower than the degree of the denominator,
followed by an integration.

D. Dissolve the denominator into factors and decompose, e.g. by “blinding the factors”.
I. Since
at —22% +1= (2% — 1)2 = (z—1)*(z +1)%

and the degree of the numerator is lower than the degree of the numerator, the structure of the
decomposition is given by

P(z)  42*-36 42®—36
Qz)  z*—-222+1 (x—1)2(z+1)2
a b c d
= + - +

(x—-1)2% (z41)2 z-1 z+4+1

We multiply by (z — 1)? (“blind the factor”) and perform the limit process x — 1. Then

a_hm4x2—36_ 4-36 _ 32 o
Casl (x4 12 (1412 4
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By a multiplication by (z + 1)? (“blind the factor”), followed by the limit z — —1, we get

2 _ 12 _
b— lim 4r® —36  4(-1) 36 _

z——1 (Qj — 1)2 - (—1 — 1)2 -8

When these constants are inserted, we get by a rearrangement and a reduction,

c d - 422 — 36 8 8
71 7241 @-12@i1?  @-1F @rlip
422 — 36 (x+1)2+ (z—1)2
S o er2 Y mo2er )y
4223641622416 2022 — 20
a (x—1)(z+1)(22-1) B (z—D(z+1)(22-1)
20 0 10

(z—1)(z+1) 2—1 z+1
We see that the decomposition is given by

P(z) 422 — 36

Q(x) xt =222 +1

_ 8 0 8 10
(=12 z—-1 (z+12 z+1

Then by an integration for x €] — 1,1],

f @

P( 8 8
dr = ——+101 -1+ ———-101 1
o x x_1+0n|x |+x—|—1 01ln |z +1]

1
- xil +10 In(1 — 2?).

C. TEesT. We shall only check the decomposition:

8 108 10 _-8-2a*41), 10-2
(z—-1)2 z-1 (z+1)2 2+1  (22-1)2 x? -1
_ —162° —16+202% 1) _ da® — 36 OED.

(x2 —1)2 xt =222 +1

Example 5.4 Calculate the integral

/2x5—2m4+1

dx.
24 _ 3

A. Integral with a latent decomposition.

D. First check where the integrand is defined. Since the degree of the denominator is lower than the
degree of the numerator, we shall first divide by the denominator in order to find the polynomial,
before we decompose the residual fraction. Once the fraction has been decomposed we integrate.
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Since 2* — 2% = 23(x — 1), the integrand is defined for = # 0, 1, i.e. in the three intervals

| = 00,0], 10,1[, and ]1,4o0[.

If  # 0, 1, then

225 — 224 4+ 1 1 1
—_ = 2 - =2 —_
x4 — a3 x+w4—x3 x+w3)x—1)
1 1—a8 1 2 +z+1
$+x—1 x3(x—1) Z$+x—1 a3
1 1 1 1
= 4 — - _ il
T -1 x 22 a3

All these fractions can immediately be integrated, hence

2 — 2z + 1 1 1 1 1
= = dr = 2 — - — - =14
/ i v /{x+x—1 x 2 x} v

I
a[\J
+
=
B
|
=
|
=
EX
4
SR
4
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Calculus 1c-3 Integration by decomposition

C. Test. If we put

1 11
2
— 22l fe—1—1 S4s
fl@)=2a+1n|z—1] n|x|—|—gc—|—2gc27
we get
1 1 1 1
/
= 2 _— — — — _
f'(@) x+m71 N R
— ot 1 7x2+x+1:2 23— (23— 1)
x—1 23 (x —1)a3
1 205 —2z* + 1
= 2$+x4—x3_ o — Q.E.D

Example 5.5 Calculate the integral

et
—dx
25+ 223 +

in each of the intervals, in which the integrand is continuous.

A. Integration based on a decomposition and possibly some substitution (this will depend on the
variant).

D. Dissolve the denominator into factors and find the domain. Then decompose before the integration.
We have two variants.

I. From
x5+2x3+x:x{x4+2x2+1} :x(ac2—|—1)2,
follows that the intervals of the domain are

] —00,0[ and ]0,+o0].

First variant. When x # 0 we get by the substitution ¢ = 22 that

/;dx_l/idx_l/ R
c@r 12 T2 2@ T st

By decomposition,

1 _A+ B C
tt+1)2  t  (t+1)2  t+ 1

we first get by “blinding the factor” that A =1 and B = —1, hence by a reduction,

c 1 1 1L 1—(t+1)*+t

P T g s PR (O DTS}
t+1)1-t-1) 1
tt+1) T
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With these values of the constants we get the integral
1 1 1
= dr = = ——dt
/m(ﬁ +1) v 2 /t:acz t(t+1)2
1 1 1 1
- _/ LI
2 Jime Lt (E+1)2 t+1

1
Inlt|+ — —Inlt+1
[n||+t+1 n|+|]

1
2
1 o1 ) 11
Eln(z)—iln(a: +1)+§£L‘2—+1
1

1 N L, z?
= ——+-In .
22241 2 2 +1
Second variant. By a direct decomposition,

1 7a+bx+c kx+ /4
r(z2+1)2 z 224+1  (22+1)2°

we get immediately that a = 1, and then
1 1 1—(2?41)2  (22+2)-(—a?)

r(z2+1)2 x4+ 1)2 z(x? 4 1)2

242 Lo
* (x2 +1)2 . 24+1 (22+1)2)7

ie.
1 1 T T
r(z2+1)2 x 22+1 (224 1)2°

By insertion into the integral we get for x # 0,

[ = /{%‘lﬂi4"inlv}dx

1 1
2 22+1

In |x\—%ln(m2—l—1)+

1 1 Jr11 22
= ———+—Iln——.
22241 2 z2+41

C. TEesT. If 2 # 0, then

d (1 1 1 x?
@{5?:7+5mp:7}
1 2x 224+ 1 22(2? +1) - 22(2?)
T
T T 1 T
@ @ @
1 1

x(zt +2224+1) 24223+ Q

T2
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Example 5.6 Calculate the integral

/ 22 +dx —7
dx
3 — 422 + 92 — 10

in each of the intervals, in which the integrand is continuous.

A. Integration by decomposition.
D. Dissolve the denominator and decompose before the integration.
I. First consider the denominator. The only possible rational roots are
z =41, +2, £5 and =+ 10.
From this we get by inspection that
23 — 4% + 92 — 10 = (2® — 42 4 42) + (5x — 10)
= a{x? — 4z +4} +5(x — 2) = (z — 2){z(z — 2) + 5}
=(x—-2){2% —22+1+4)} = (z—2){(z — 1)*> +4}.
The integrand is defined and continuous in each of the intervals
| — 0, 2] and 12, +o0].

By the decomposition we must have the structure

x? +4r —7 _ R
23— 422+ 9210 (2 —2)(22 — 22 +5)
a br +c

x—2+x2—2x—|—5'

It follows immediately (“blind the factor”) that

_22+4~2—7_1
S 22-2.245
hence
bxr + ¢ - 22 +dx —7 1 2 —2x+5
r2—2x+5  (z—2)(22—-22+5) -2 22-20+5

22 4dr—7—2>+2x—-5
(x —2)(x% — 22 +5)
6x — 12 6

(x—2)(22 =2z +5) (z—1)2+2%

When x # 2, we get by insertion that

24+ dx -7 1 6
de = d
/:c3—4x2+9x—10 * /{x—2+(x—1)2+22} v

-1
In |2 — 2| 4+ 3 Arctan (xT) .
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Integration by decomposition

C. TEST. Let

-1
f(z) =1n |z — 2| + 3 Arctan <xT> , T FE2,

Then by differentiation for x # 2,

fl@) =

Si.

Swedish Institute

Lo 1 L1 .6
x — 2 r—1\2 2 -2 22-2zx+5
1+( )
2
22 —12 2 0 gy —
T T+ 5+ 6x _ x4+ 4r—7 . QED.
23— 422 +9x — 1= 23 — 422 + 92 — 10
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Example 5.7 Find the complete solution of the differential equation

dx

(119 dt

+ 4tz = 2t(1 — t4), t>1.

A. A non-normed, linear, inhomogeneous differential equation of first order, where the method of
guessing is not obvious.

D. First norm the equation. Then find the complete solution of the homogeneous equation, and
finally a particular solution by means of a solution formula. One shall use a decomposition during
these calculations.

I. A division by 1 —t* < 0 gives the equivalent normed differential equation

dx+ 4t
Ty
dt 1—t4

4t 1 1
—dt = — + —— | 2tdt
/1;%4 L/(lﬁ_+1+ﬁ>
1 1 2 +1
— du =1
1;ﬁ< u—1+u+1>1L nt?—J
t?+1
= In(—-——
2-1
follows that the complete solution of the homogeneous equation is

t?+1 2 -1
ceXp<ln(t2—_1>>—Cm, t>17 CER

2t,  t>1.

From

P(t)

2

t*—1
If p(t) = 21 t > 1, then a particular integral is given by
2t ?2—1 [t*+1

2 -1 u+1 2 -1 2

ﬁ+1[;ﬁu—11‘ ﬂ+1l;ﬁ{ +u—1}“
= Pl om(eo1))

241

2 2
= 224 ——42(1————)In(*-1).
e ( ﬁ+1)n( )
Hence the complete solution is

2 2 t?2 -1
42 . s 2 )
r=t 2+t2+1+2(1 t2+1)ln(t 1)+01 TR t>1,

where ¢; € R is an arbitrary constant.
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Since
) S _tz__l
24+1 241’
this expression can also be written
t2 -1 2 -1
2 2
r=t *1+2m1n(t *1)+Cm, t>1, CgR,
where ¢ = ¢; — 1.
C. TEST. Let
t2—1 2 -1
= *-1+2-—— (-1 e
’ e n ) e 241
2 —1

2
= t?—1+42(1-=——)In(*-1 o t>1 R.
+ ( t2+1> n ( )+ec T >1, ce
Then

d
(1—th) d—f +dtw

8t -1 2 4t

1—tH< 2%+ ——— In(t?—1)+2 . .

( ){ T M2y e (t2+1)2}
2 ) 2
In(t? —1)+4t-c- ——
L )t dte g
1—¢2 1—¢2
In(t2=1)—4¢(t2=1)+4et - ——
1241 n( )4 Jrde 1412

483 — 4t + 8t -

2t(1—t*)+8t -

t2—1 2 —
(2 —1)+8t - —— In(£?>—1)+4tc - ——
+4t( )+8 o n( )+-4tc I

2t(1—t*).  Q.E.D.

Example 5.8 1) Decompose the fraction

22 —3x+38
@)= e yers 7%

2) Find an integral of f for x > —3.

A. Decomposition and integration.
D. Decomposition, substitution and integration.

I. 1) Since 22 — 42 +5 = (r —2)? + 1 > 1, we get by the standard method,

f@) = 22 —3x+8
(2 — 4z 4+ 5)(x + 3)
. 9+9+48 1 22 -3z +8—22+4x -5
9+12+52+3 (22 —4x +5)(z + 3)

(R S SIS
r+3 22—4r+5 z+3 (r—2)2+1
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) The integral is

/f n(z + 3) + Arctan(z — 2), x> —3.

Example 5.9 1) Given that the polynomial
Qz) =a® — 22" + 203 —4a? + 2 — 2

has the root 2. Write Q(x) as a product of factors of first degree and irreducible factors of second
degree.
2) Decompose the fraction
P(x) 2a* —22°+32° — 32 +3

Qz) Q(z) ’

and calculate

x
d
Q(x)
A. Integration via a decomposition.

D. 1) Divide by & — 2 and analyze the resulting polynomial for further roots.
2) Use the splitting from the decomposition (1). The integrate.

I. 1) It is immediately seen that
Q(z) = (2°—22") + (22° —42%) + (z — 2)
(z —2)(z* +22% + 1) = (x — 2)(2® + 1)
2) The structure of decomposition is
P(x) 204 — 223 + 322 — 3z + 3

Q@) ~ @2 t1p

a bx + ¢ kx+ /4
m—2+aj2—|—1 (22 +1)%’
because deg P < deg Q. It is immediately seen that

a_2-24—2-23+3-2273~2+3_32—16+12—6+3_1
(22+1)2 25 ’

Then by a rearrangement,
bx + ¢ kx+ /4
x2+1 (224 1)2

2zt — 223 + 322 — 3z +3 1 (22 +1)?

B (z—2)x2+1)2  1-2 (2241)2

204 — 223 + 322 —3x +3 —2* — 222 — 1
B (x—2)(a? +1)2
ot =223 4+ 22 -32+2 (2 -2)+(z-2)(x—-1)
(x—2)@2+1)2 (x—2)(a +1)2
_x3+:v—1_ T 1
T @242 2241 (224 1)2
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All things put together we get
P(x) 1 x 1

Q(x) x—2+x2+1_(a:2+1)2’

For x # 2 we get

1 1
/ de =1In|z — 2| / : dx:iln(1~|—x2),

r—2 2 +1
hence
1 T 1
— dr=——— + — Arct .
/(x2+1)2 T ey T een e

When these subresults are inserted we get for x # 2,

Pgi;dx B /{xi2+xzil_(:ﬂ2il)2}d$

1 1 1
= ln|x—2|+§ln(1+x2)—§rxm2—§Arctanx
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Integration by decomposition

C. TEesT. By differentiation we get

d 1 1 1
%{ln|m—2|+§ln(1+x2)—§1jj—x2—§Arctanx}

1 T 11 z? 11

z—2 1422 21422 (14222 21422

1 x 2?2 — (14 2?2 1 r(l1+2%) -1
U Ty (' (1+2)

x—2 1422 (14 22)2 x—2 (14 22)?

ot 4+ 222 + 14 (2 —2)(23 + 2 - 1)
(x —2)(x* 4+ 222 + 1)
ot 222 + 142t — 223 422 - 32 +2
25 — 20t + 223 — 4% +x — 2
20t — 223 + 322 — 32+ 3

= . E.D.
0 — 204 4+ 223 —Ax2 4+ —2 Q

Example 5.10 Find an integral of the function

22 —5x+5
@)= —arioe_3 *°°%

A. Integration via decomposition.

D. Start by a decomposition. We give three variants. Then integrate.

I. Since the degree of the numerator is lower than the degree of the denominator in the rational

function f(x), the decomposition must have the structure

x? —bxr+4 A Bz +C

1) = 6 7100w =8 2-3 Z-6et10’

because 22 — 6z + 10 = (x — 3)2 +1 > 1 for every z € R.

We give three variants of the solution:
First variant. By “blinding the factor, etc.” =z — 3, we get

A:[x2—5x+5} 9—-15+5
r=3

22 — 6z + 10 9-18+10
Putting A = —1 we get by a rearrangement,
Bz +C B 22 —bx+5 B A
22 —6x+10 (22 —-6z+10)(z—3) -3

(2 — 5z +5) + (22 — 6z + 10)
(22 — 6z + 10)(z — 3)
222 — 11z + 15
(22 — 62 4 10)(x — 3)
20— 5
22 — 62+ 10

79
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2 —5x+5 1 2r—5

1@ = T i0@=3  1-3 #Z-6z+10’

Second variant. When we multiply by (22 — 6z + 10)(z — 3) we get
22 —5r+5 = A(2® —6x+10) + (Bx+C)(z —3)
= (A4 B)z? +(-6A—3B + C)x + (104 — 30).

An identification of the coefficients gives

A+ B - 1,
64 - 3B + C = -5,
104 - 3C = 5,

from which we get either by fumbling or by using Linear Algebra,
A=—1, B=2 og C=-5
ie.

22 —5r+5 1 20 —5

f@)= (@ —6r+10)(@—3)  2-3 22—6e+10

Third variant. From 22 — 6z +10 = (x — 3)? + 1 we get by the substitution v = x — 3, z = u + 3,
that
22 -5z +5
(22 — 62 + 10)(x — 3)
w+u—1 1
u

=32+ (x-3) -1 w?+u-1

_
{(x-3)2+1}z—-3) (v2+1u
1

_ n _u +u—1+u2+1 1
(w24 1u (u?+1)u u

2u+1 1 1 20— 5

211w r-3 @ _6rr10

Fourth variant. (Sketch). Insert three different z-values and solve the system of linear equations
in A, B and C. It is possible to get through by this method, but it is nevertheless the most
difficult one, and since it does not have a unique variant, it shall not be given here in all details.

Integration. From 22 — 62+ 10 = (z—3)?+1 > 0 follows for > 3 via the decomposition above,

22 —br+5 20 -5
/(z276x+10)(x / d +/x276z+10dx
2( 3)+
= —1 — -~ 7 -
n |z 3|—|—/( _3)2+1d
2z — 3) / 1
- (- )y g
n(@ 3)+/(x—3)2+1 ] amar ™

= —In(z —3)+In{(z —3)*+ 1} + Arctan(z — 3)
= —lIn(z —3) +1In(z? — 62 + 10) + Arctan(z — 3)

1
= ln{x—3+ 3}+ Arctan(z — 3),

T —

where some variants of the final result are given.
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Example 5.11 Cualculate the integral
1
.
/ Brattatrl

A. Integration by decomposition.
D. Decompose and integrate.

I. Since 2% +2? + 2+ 1= (2 +1)(z* + 1), we get for z # —1,

1, 1
1 B 1 11 5T —5tl
B+r2+z+1  (p+1)(2+1) 22+1 (z+1)(2+1)

11 1 (z+1)(z-1) 1 1
2x+1 2(@+D(x24+1) 2z+1 2x24+1

C. TEST.

11 1az—1 1
2x+1 22241 2 (z+1)(22+1)

1
= —. ED.
w3+ +a+1 Q

{£2 +1-2*+1}

I. For z # —1 it follows by the decomposition that

1
—d
/x3+x2+x+1 *
1/ 1 1 a: 1 1
- de— =~ [ =X dqey: [ —"—a
2/x+1 * 2/x2+1 x+2/x2+1 v

1 1 1
=3 In|z+1]— 1 ln(m2+1)+§Arctan .

Example 5.12 Calculate the integral

52 d
.
43 — 422 +1 -1

A. An integration where one must assume that = # 1.
D. Start by a decomposition.

I. Now,

4o —dx* +x— 1= (z —1)(42? + 1),
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and the degree of the numerator is lower than the degree of the denominator. Therefore, by a
decomposition for x # 1,

52 52
A3 42 +z—1  (z—1)(A22+1)
5 1 52 1
- g.x—1+{(x—1)(4x2+1)_3:—1}
1 52 — 42 — 1 1 z+1

x—1+($—1)(4x2+1) :1771+4x2+1'

Assuming that = # 1, we get the integral

/ 52 d _ / dx +/ x J +/ 1 d
R S I S B | 12 11 12 11

1 1
= Injz—1|+ g In(42? + 1) + 3 Arctan(2x).
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Calculus 1c-3 Integration by decomposition

C. TEST. By a differentiation of the result we get

1 +1 8z +1 2 1 z+1
r—1 8 4da2+4+1 2 42241 -1 4a2+1
_4x2+1+x2—1: 512 QED.

C(r—1D)(a2+1)  dad —da2 4z -1

Example 5.13 1) Decompose the fraction

t?+t+3
(t—1)(t2+4)

2) Then find the complete solution of the differential equation

dx 2t+1 - 1 £ 1
C(t-1)(#2+4) ’

it T Prtt3”

A. Decomposition, and a linear, inhomogeneous differential equation of variable coefficients.

D. By the decomposition we “blind the factor” ¢ — 1 in the denominator and reduce. Then solve the
differential equation, either by a formula or by multiplying by the integrating factor t2 4t +3 > 0.

I. 1) By the “blinding of a factor” we get for ¢ > 1,

4+t+3 1+1+3 1 4143 1
t—-1)2+4) 1+4 t-—1 (t—1)(t2+4) t—1
1 t24+t+3—t>—4 1 1

—i (t—1)(t2+4)  t—1 tera
where we immediately can check the result. (Mental arithmetic!)

2) First variant. When we multiply the equation by ¢ + ¢ + 3 > 0, we obtain the equivalent

equation
1 1 2 +t+3 ) dx
= = (¢ t+3) — 20+1) -
i—1 244 T R G A
d
= S {E+t+3)a},
hence by integration, where t > 1,
dt 1 dt
2 4t4+3)z = S L
(t*+t+3)z c+ 75_1+4/1 N
()
1 t
= c—|—ln(t—1)—|—§Arctan 3
Division by t2 + t 4 3 gives the complete solution
1 t
In(t — 1) + = Arctan —
t24+1+3 2 +t43 ’
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2t+1

Second variant. The equation is normed, and p(t) = ——, so
d Pt = +t+3

P(t):/p(t)dt:/ﬂdtzln(t%rwrs),

t2+t+3
and the complete solution is
z(t) = c-e PO fe PO /eP(t)q(t) dt

c 1 t?+t+3
D) + 5 / 2 dt
2Ht+3 24+t+3) -0 +4)

B c N 1 / 1 N 1 it
P2 4t+3  t2+t+3 t—1 t2+4

1
In(t—1) + §Arctan (;) c
= , t>0, € R.
2+1+3 TR 13 ¢

Example 5.14 Given the differential equation
dx 2t+1 1

TR TR e TR

t>1.

1) Ezplain why the complete solution of the homogeneous equation is given by

c

== e R.
2t+3 ¢

Zrom (1)

2) Find the complete solution of the inhomogeneous equation.

A. This is more or less the same as Example 5.13, only written in another way. A linear, inhomoge-
neous differential equation of first order of variable coefficients.

D. Test the given solution in the equation and then exploit the general structure of the solution.

I. 1) Putting @0 (%) into the left hand side of the equation gives

- C
2 4t+3
dx 2t+1 2t +1 2t +1 c

A Lk - : =0
it T3 T T @B ti3? 2 iti3 Brit3

Thus, .. (t) is a solution of the homogeneous equation. since ¢ € R is an arbitrary constant,
the general structure of the solution then gives the result.

2) A particular solution is given by

2
xo(t) = mhom(t)/ Q(t) dt — 1 / t24+¢+4+3 0

Toom(t) 24143 ) 3 —124+4t—4

Decompose the integrand, i.e. start by factorizing the denominator

2 +t+3 - 2+t+3 (P4 +(t—1)
B—t2+4t—4  (t-D2+4) (t-1){2+4)
1 1
T i1t Eea
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Since t > 1 is given, it follows by insertion and integration that a particular solution is given

by

2o (t) 1 LIRS S 7
0 T O24+t+3 t—1  2+4

1 t
In(t—1)+ 5 Arctan 5

t2+t+3
Combined with (1) we get the complete solution

1 t
In(t—1)+ 5 Arctan 5 +c

x(t) = ., t>1, ceR.

t2+1+43

Example 5.15 Calculate the integral

x2+x+1
_rrrvl oy ~1.
/(z+1)(x2—|—1) T w7

A. Integration via a decomposition.

D. Decompose and integrate.

I. The degree of the numerator is lower than the degree of the denominator, hence the fraction is given
in its canonical form. By blinding the factor x + 1 in the denominator we get that the coefficient

1

1 +1 r+1
r+1 22241

of o is 3’ hence
2 Lo
224+ z41 11 +:17 +x+lf§(x +1)
(x+1)(2241) 2x+1 (x+1)(2241)
111 (w41
B §m+1+§(m‘+1)(m2+1)
1
2

Thus for x # —1,

22 +r+1 1 1 1 T
—————dr = = | —dr+ = | ——dx
(x+1)(224+1) 2) z+1 2) 22+1

1
—d
/x2+1 *

1 1 1
= 3 In|z+ 1]+ 1 In(z? +1) + §Arctan x.

C. TEsT. We get by a differentiation,

d (1 1 1
%{5ln|x+1|+1ln(x2+1)+§ArCtan$}
11 +1 2z +1 11 1 +x+1
S 2z41 42241 22241 2 \z+1 2241
_ L@@+ 2tetl o opp
2 (z4+1)(22+1) (z+1)(22+1)

|
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Example 5.16 Find that integral F(z) of

3+l +4r+1

fla) = x4+ 522 +4

for which F(0) = 0.
A. Integration.
D. Start by a decomposition.

I. Since 2%+ 522 +4 = (w2 + 1) (x2 + 4), we get by considering odd/even exponents in the numerator
that

1) B+ +4dr+1 x2+4 2 +1
x = = -
xzt + 522 + 4 (@2 4+ 1D)(x2+4) (224 1)(x2+4)
_ T n 1
o241 2244
hence,

F()—/m R
YT \Erl e ra

1 ) 1 t\ 1"
= [5 In (t +1)+§Arctan <§)]
1 x
2 2
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Example 5.17 Decompose the function

2?2 —4dx+5

EEEEDN

fz) =

and then find all the integrals of the function f(z).

A. Decomposition.

D. Blind the factor (z — 1) in the denominator; remove the corresponding term and reduce.

I. We get by the standard procedure,

22 —4x+5 201 1 (322 -12¢+15 22% + 4
(x—1)(22 4 2) gm—1+§{(x—1)(x2+2)_(x—l)(m2+2)}
2 1 12?12+ 11
T o 3z-1 3(x—-1D2+2)

2 1 1x—11
T 37173212
201 1 oz 11
N 5x—1+§x2—|—2_§x2+2'

Hence for z > 1,

2 —4dx+5 2

/ (z—1)(22 +2) du

3

/

dx l/ x x—E/ dz

z—1 3 ) 22+2 3 ) x2+2
2 1 11 T
=1 — 1)+ = In (2% +2) — ——= Arct — .
3 n(x )+6 n (z* + 2) 373 rcan(ﬁ)
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6 Trigonometric integrals

Example 6.1 Prove that

1
/ ——dz =1In ‘tan L
sin x 2

Then prove that

, x €lpm,(p+ x|, peZ.

L ’t (x+7r)} e} LI [ €z
cos T T = In an 2 4 s X 2 p'/T,2 p?T, p .

A. Check two integrations.

D. Is the integrand, resp. the right hand side defined in the given interval?
Differentiate the right hand side in order to get the integrand, i.e. test the indicated solutione.
The second result can be derived from the first one.

I.and C. 1) If z €|prm, (p + 1)x[, p € Z, then sinz # 0 and tang are defined and # 0. The two

sides of the equation are there both defined in the given interval.

Now let

f(z) =In ‘tang’7 x €lpm,(p+ D[, pe€Z.

Then by a differentiation
1 1 1 1 1
fla)= — — 3= = —,
tan g cos? g 2 2sin g cos % s

so we have tested our solution, and we have proved the first formula.

2) fx e —g+p7r,%+p7r , p € Z, then

™
ey €lpm,(p+ )7, peZ

Thus we can apply the result if (1) with a replaced by x + g Then by insertion,

In ’tan(g+ﬁ>’:/;ﬂ.d:c:/ L dx,
2 4 sin(x—|—§) cos T

and the formula is proved.
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Example 6.2 Calculate the integrals

(1) /cosgx sin z d, (2) /cos3:cdx.

A. Simple Integrations.
D. In both cases we introduce a substitution, ¢t = cosz in (1), and ¢t = sinz in (2).

I. 1) If t = cosx, then dt = —sinx dx, hence

1
/cos?’x sin:vd:r:f/ t3dt = —= cos* 2.
t=cosx 4

2) If t = sinz, then dt = cosz dz, hence

/cosg’xdx = /(l—sin2x)cosxda:

= / (1—t%)dt
t?sinx

sinx — 3 sin® .

C. The tests here are just mental arithmetics.

Example 6.3 The following calculation is not correct. Indicate what is wrong and then calculate the
correct answer.
5T:lr

y=tan 2
/ cot x dx / cot( Arctan y)d Arctan y
z y=tan &

[t [ () o
TS R vy 1+2)"

A. This is an example of the notorious task: “Find the error in the following, correct the error and
then perform the calculations.”

In

N| =
| w

D. Check if the application of the substitution is legal.

5
I. We cannot apply the substitution z = Arctan y € ]—g7 g [ in the interval [%, Fﬂ] , thus, already

m
the first equality sign is wrong. There are also other errors. E.g. the correct value of tan 3 is
1

7

It is possible to save a lot of this wrong calculation, if we just notice that cot x is defined in the
interval and that

/ cotzdx = 0,
s

m‘g‘
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because

()= (3-)
CO — X)) = —CO — — X .
2 2

Then

57
6
/ cotxdr =
T

57
6

5
cotxdx—i—/ cotxdx

T

4

y=tan §
= O+/ cot(Arctan y) d(Arctan y)
y=tan T
7 14 (1
3 3 y
[ [l
/1 y(1+y?) 1 ly 1492
1 1
1 V3 y2 V3
= |lIny—<-1In 1—|—y2] :—[l )]
gm0 " =g ()]
1
1 Q 1 1
= “dm|-—3_ 111(5) =5 In2
14 =
+3
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REMARK. The chosen substitution is not the most convenient one. Instead we note that sinz > 0
in the total interval of integration, and then we get

6 6 1 6 dsinx
cot xdx - cosrdxr = -
- ~ sinz -~ sinz

4 a 4
1 1
= lnsin%—lnsinﬁzln———:—i In2. ¢

1" A

Example 6.4 1) Apply the substitution given by t = tang in order to calculate the integral

vt
2sinxz —cosz + 5 -

2) Find the exact values of the following two integrals

™ 1 27 1
/ . dx, / . dx.
_x 2sinx —cosx + 5 o 2sinxz —cosx + 5

A. Integration by the substitution ¢ = tan L This is only valid for « €] — 7, w[. Therefore, there is

a trap in the second question of (2).

D. If possible, apply a table. In (2) we use that the integrand is periodic of period 27w. We may
possibly use a decomposition.

I. 1) When we use the substitution

t:tan; x = 2 Arctan t, x€]—mm, te]—o0,+o,
2 " 1—t2 _ 2t
= s COST = ———= SNy = ———
1427 1+t2° 1+ 2’

we get for x €] —m, 7|,

1
d
/2sinm—cosx+5 *

1 2
imtanz At 1t 1+t

- +5
112 112

/ 2 dt—/ 2 dt
itanz At — 1 Ht2 454562 [, . 612+ 4t + 4
2 2
1 1 1 1
= = dt = ——dt
3/ Lea, 2, 2 3/ oz 1\ 2
t=ta t2+3t 3 t=tan 3 <t+ > +

5
9
= 1 3 Arctan<3 {tan + = })
3 V5 V5

1At ( tam m+1>
= rctan an
NG V5 2 5
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which only holds for x €] — 7, 7].
C. TEST. By differentiation we get

i {LArctan (i tang + i)}
dr (/5 V2 5

N W

z 2 2 E
5+ {3tmZ 41} cos?
1

N w

p)
5 cos? g + {3sing —&—cosg}
1

5 cos? g + 9sin? g + cos? g +65ingcosg
1
6cos? 2 + 9sin? 2 + 3sinz
2 2
1
4 cos? z + 6sin? z +2sinx
2 2
1

2(1 +cosx) +3(1 — cosz) + 2sinx

1
= . .E.D.
5 —cosx+ 2sinz Q

w

DO |

N W

T
2) In the first case we can use the substitution ¢ = tan > and we find according to (1),

[z
- dx
< 2sinx —cosx + 5

{i Arctan (i tan z + i)]mﬂ
v VARV I B

= L { lim Arctan (i tan z + L)
V5 e Vi 2 V6
— lim Arctan <i tan z + L) }
T——7+ \/5 2 \/3

- HE-(9)-3
V5 L2 2 V5
In the second case the substitution ¢ = tan; is no longer legal. However, the integrand is

periodic of period 27, hence

- 1 B 1 ™
. dr = - dr = —.
0 2sinx —cosz+5 _r 2sinx —cosx + 5 V5
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Example 6.5 Calculate the value of the integral

/2 cos? t sin® ¢ dt.

0

A. A trigonometric integral. Here I shall take the liberty of demonstrating that I have found 12
variants. The purpose is to show that even if a textbook indicates a standard substitution, this
may not be the most convenient one to use (cf. 7th and 8th variant). The easiest method is of
course 1st variant, where a substitution known already from high school is applied.

D. Just go through all the variants.

I. 1st variant. By the substitution © = cost, du = —sintdt, and the fundamental trigonometric
relation we get

™

3 5
/ cos? t sin®t dt = / cos?t - (1 — cos®t)sint dt
0 0

0 2 2 ' 2 4 1 1
- 1— = - =-_-=2=

REMARK. This is the simplest variant. ¢

2nd variant. The substitution v = cost, du = —sintdt, followed by a couple of partial integra-
tions give

bl bl

/ cos’t sin®tdt = — / cos?t sin®tdcost
0 t=0

z s

2 2
+ —/ cos*t sint dt
3 Jo

1
—= cos®t-sin’t
3 0

2 2 2 3 2
—g/o cos*tdcost = {_ﬁ cos5t]0 =15

3rd variant. By some trigonometric pottering, where we also transform into the double angle a
couple of times and an antilogarithmic formula, we get

2
. 1
cos’t sin®t = {cost-sint}Qsint:{§ sin2t} sint
1 129f . sin ¢ 1 1—cosdt ;
= —sin“2t-sint=--———-sin
4 2

1
= g{sint —cos4t -sint}

— e 1('5t in 3t)
= 8 Sin 2SlIl S

L oot + L sin3t+ - sint
= —— S1n — Sl — S1int.
16 ° 16 ° 8"
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Then by integration,

z
/ cos? t sin® ¢ dt
0

1 [2 1 [% 1 (3
= _1_6/0 sin5tdt+1—6/0 sin3tdt+§/0 sint dt

1 s 1 = 1 Ed 1 1 1
= %[COSER]OZ - E[cos3t}02 —g[cost]o2 :O_@+@+§

1 1+1+2 32 2
16\ 5 3 T 16-15 15°

4th variant. By transforming into the double angle a couple of times and a partial integration
we get

Z Z
/ cos’t sin®tdt = / sin® 2t sint dt
0 0

(1 — cos4t)sintdt

S—
(SE

vl

Ol 0l &=

1 12
sintdt — —/ cos4t sint dt.
8 Jo

J

.
s &
= F
| \" Y

27
(22277 & " a-;‘
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Calculus 1c-3 Trigonometric integrals

Here,

s
jus
2

2
/ sintdt = [—cost]§ = 1.
0

By two partial integrations (NB, in the right succession) we get
/cos4t -sintdt = —cos4t - cost — 4/sin4t -costdt
= —cos4t - cost —4sindt -sint + 16/cos4t -sint dt,

hence by a rearrangement;

15/cos4t sintdt = cos4t - cost 4+ 4sindt - sint,

i.e.

1

Bl 1 =
/ cosdt-sintdt = — [cos4t - cost +4sindt -sint]§ = ——.
o 15 15

Then by insertion,

T, [z 1 [z .
cos“t-sin’tdt = = sintdt — — cos4dt -sintdt
0 8 Jo 8 Jo
1
8

5th variant. An application of Euler’s formulse gives

6zt efzt ezt _ efzt
cos?t sin®t = * -
2 21

1 . . 1 . . . _
— Z (62125 + 2 4 e—21t) . <_§> (63125 _ 3ezt + 36—11& _ e—Szt)
= _a {65” _ 63215 _ 26” + 267” + 673” _ 675”}
1
B 1 e5it _ e—5it eSit _ e—Sit 5 eit _ e—it
16 2i 2i 2i

L. . .
= 35 {sin5¢ — sin 3¢t — 2sint}

1 . 1 . 1 .
= —— sinbt+ — sin3t + — sint.

16 16 8
Then by an integration,
/cosztsinstdt = —i/sin5tdt+i/sin3tdt+l/sintdt
16 16 8
1 1 1
= 0 cos ot — 8 cos 3t — 3 cost,
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thus
3 1 1 1 2
/0 cos’t sin®tdt = %cos5t—4—8(:os3t—§cost]0
1 1 1 1 1 1
= S s (N ) )
0 80+48+8 16(5+3+)
- 32 2
~16-15 15’

6th variant. We again apply Euler’s formule, cf. the 5th variant,

1
cos’t sint = ——

o (65it _ Bt _9¢it 4 9ot 4 =Bit _ 675it) )
i

When this is integrated with respect to the real parameter ¢, we get

z
/ cos? t sin® ¢ dt
0

1 L e T
= —— / et dt —/ etdt — 2/ eltdt
321 0 0 0

—|—2/ e‘”dt—f—/ e_?’”dt—/ et
0 0 0
thus

2
/ cos? t sin® ¢ dt
0

1 1 3 1 o T
_ _E {E [657,15]02 _ 5 [63”}02 _ ; [ezt];

1 i 1( 2 2
D LN F ) ST QR

32i{ 5 (D +30 (=Y ’} 32{ 5+3+}
16 15 16 15 15

T
7th variant. Since [0, 5] C |—m, m[, we can also apply the “standard” substitution, recommended

by some textbooks as being the method,
t

m:tani, t = 2 Arctan z, te]—mmn, z €R,
dt 2 ’ 1—22 it 2x
—=— cost = —— sint = ———.

dr 14 z2’ 1+ 22’ 1+ 22

We shall see below that this standard method in the given case implies a lot of unnecessary
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calculation. We first get by insertion,

z tan 1 — 2 2 2 3 2
/ cos? t sin® ¢ dt :/ LI gc . dx
0 0 1+ a2 1+ 22 1+ 22

1 2\2 3 1 2)\2,.3
1 —2%)2 823 2 1
:/( )" 8z dm:16/7( =) o,
o (A ra2p o (1 +a7)

where the integrand is a rational function, so we can decompose it.

However, it will here be smarter first to apply the substitution u = z2, du = 2z dx. Then we
get somewhat easier,

1 2)\2,.3 1 2 1.3 2
1-— 1-— -2
16/ ﬂdng/ wduzg/ w2t
0 0 0

(1+a2)8 (1+u)e (ut 1P
/1{ 2 . 64 10 8 }du
—Jo (u+1)8  (u+1)® (u+1)* (u+1)3
21 e 1 0 1 8 11
5 (u+1)®° 4 (u+1* 3 (u+1)3 2 (u+1)2],
32 1 1 40 1 1 32 40
D B S e I QU St | =g
{5 32 0 16+3 8 4} {5 6+3 }
1 5 32 40
=——14+--1——+16——+4
5 3 5+ 3Jr
1 1 2
=——=-—[6+4+< 20— (134 =
=5 (oe5) e (95
717172717172
5 3 3 5 15
8th variant. First we apply the same “standard” substitution as in the 7th variant. As before
we get
z 1 2)2..3
1—
/2 cos? t sin3tdt:16/ %dw.
0 o (L+a2)8

This time I shall show in all its horror what happens if one starts by unconsciously decomposing
without using the substitution v = 22, Since the denominator (1 + 2%)® cannot be reduced
further in the real, we must also perform a division. Then we get by “adding something and
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then subtract it again” from the numerator that

(1 —22)223 _ 1. 7 — 22 + 23
(14 22)6 (14 22)6
(27 + 2°) — 3(25 + 23) + 4(2® + ) — 4z
(1+22)8
(22 + 1) (2 — 323 + 4z) — 4o
(14 22)8
64x 2% — 323 + 4
C(wa?)s T (Ta?p
_ b4 +16.($5+$3)—4($3+$)+8{E
(1+ x2)6 (14 x2)°
_ G4z +16.(332+1)(x3—4x)—|—833
(14 22)¢ (14 22)°
64x 128z 3 —dx

= — 16 — =
A+a208  (+a2p 0 Ut

16 -

- 16-

= 16-

"MPV'# . |

‘n—-

Today’s job m:

Si.
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hence
16.(1—.%2)2.’[33 _ G 1% +16.($3+x)—5x
(1 +22)° A+a20 ' (I+a2) 1+ a7
64z 128z 80x 162

BT R ) R e R gy
and then by integration

z 11 _ ..2y2..3
/QCOSQtSiH?)tdt:lG/ de
0 o (L+a2)8

_/1 __Gdw 1280 80z 16z |
= . (1+$2)6 (1+x2)5 (1+x2)4 (1+x2)3

[, 64 1 128 1
_[ 2.5 (1+22)5 2.4 (1+a2)*
40 1 16 1 !
+ﬂ'(1+x2)3_ﬂ'(1+x2)2]0
2
Bv

where the final calculations of course must follow the same pattern as in the 7th variant.
9th variant. Some pottering, starting by the substitution u = tant.

Since u = tant is a one-to-one map of [0, g { onto [0, +o00[ where du = (1 + tan?t)dt, and

1 tant s
cost = + ——, sint = + ———, te {O,—{,
V1 4+ tan?t¢ V14 tan?t 2

it follows from the rearrangement

cos’t sin®t = cos®t-tan®t
tan®t (1+ tan®t)
= . an
(1 + tan?#)3v/1 + tan? ¢ ’
that
2 9, . 3 /72r tan3 ¢ 9
cos“tsin’tdt = 1+ tan“t)dt
/0 o (1+tan?¢)3v1 + tan?t ( )
“+oo u3
= / du
0 (1+u?)3V1+ u?

The presence of the factor v/1 + «? in the denominator invites one to apply the substitution
u = sinhxz, V1 +u? = +coshz, du = cosh x dz, hence

3 ) 5 +oo u T sinh®x  coshx
/ cos“ t sin” tdt :/ / dr
0 o (1 +u2)3\/1+u2 cosh®z coshz

+o° cosh?z — 1 Foo 1
:/ cos 3;"3 .Sinhxdg;:/ ( — 5 )dcoshx
0 cosh” x 2=0 cosh*z  cosh®z

_[1 1 1 1}*‘” 11 2

_Z. Z. =04 - — - = —,
3 cosh®z 5 cosh’z 3 5 15
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10th variant. Start like in the 9th variant and derive the formula
5 1 +o00 2
/ cos?t sintdt = = / v = - 2u du.
0 2Jo  (14u?)sz

Then by the substitution y = 1 + v?, dy = 2udu, v> =y — 1, at

™

b oo +o0
/ cos2tsin3tdt:1/ Y 71dy:l/ {y_%—y_%}dy
0 2 /i Yz 2 Jy
“+oo
111 _3 1 _s 1 2 2 2
A 5{“5‘5}5
2 2 1

11th variant. It is also possible to use the so-called Beta integral, but this lies outside what can
be expected by the reader, so we skip this variant.

12th variant. If one by some accident should have chosen the “wrong” substitution
u = sint, du = costdt,

it is still possible to go through the calculations, because cost = ++/1 —u?2 for ¢ € [O, g}
Then

us

Z 3
/coth-sing’tdt = / sin®t- V1 —sin?¢ - costdt
0 0
1 1
1

= /u?’\/l—vﬂduzi/ w1 —u? - 2udu
0 0
1/t 1/t

= —/ y\/lfydy:—/(lfv)\/ﬂdv
2 Jo 2 Jo

1

1/1 1 3 112 5 2 5
fr— —_ {’U27'U2}d'l):— — V2 — =92
2 Jo 23 5 1,

Example 6.6 Cualculate the integral

CosT

—dux.
V1+sin’z

A. Integration.
D. Apply the substitution u = sinx, du = cos x dzx.
I. By the substitution above we get

CcoS & du

I ——— = [Arsinh u]y—ginh =
\/m u=sin x \/1—0-—112

= [In(u+ V14 u?)]y=gine = In (sinx + V1 +sin? x) .
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C. Test. A differentiation gives

d
e In(sinz + V1 + sin” z)

1 2sinc- cosx
= cosSx + —————
sinz + 1 +sin? 2¢/1 +sin®z

cosT 1+sin®z +sinz cosT
- + s . QED.

sinx+\/1+sin2x. \/1+Sin2x _\/1+sin2a:

Example 6.7 Calculate by means of Fuler’s formule

T
/ sin® x cos? 3z dz.
0

A. Trigonometric integral.

D. First apply Euler’s formulae on the integrand.

— _i {622'93 _ 2+672iz} . i {662'&0 +2+676im}

I. The integrand becomes

sin? z cos? 3z

_ 71_6 {687,30 o 266130 + 64295 + 262295 44 267211 + 6747,1 o 26767,:5 + 6781’}
1
= 3 {cos 8z — 2 cos 6x + cosdx + 2 cos 2z — 2},

hence by insertion,

™ 1 ™
/sinzaccos23xdx = §/ {—cos8x + 2 cos 6z — cosdx — 2 cos 2z + 2}dx
0 0
1 T
= —.9.7=°L
g T T
because

s 1 s
/ cosnxdr = [— sin nx] =0.
0 n 0

REMARK. A calculation without using Euler’s formule is the following
.2 2 1 1
sin“ x cos® 3x = 5{1—cos2x}- 5{1+C0861‘}
1
= Z{lfcos2x+c036x7cos6x~cos2:c}

1 1
= 1 {1 — cos 2x + cos 6z — 5 (0058x+cos4x)},
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and we obtain again

/ sinzxcos23xdx=%+0+0+0—|—0:£. O
0
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7 Riemann sums

Example 7.1 Given a natural number n, consider the Riemann sum

|
n=>
=1

1) Calculate in decimals S(2), S(3) and S(4).
2) Find the limit

lim S(n).

n—oo

Hint: Apply the rearrangement
n n
;nﬂ—z—

=1 +
n

A. Riemann sum.

D. Follow the text and consider the function f(z) = z € [0,1].

142’

08

06

0.4

02

Figure 2: Graphic interpretation for n = 4.

I. For n = 2 we get

22: T T
— 371712
For n = 3 we get
‘L1 1 1 1 1
S8 = X3 Titste w0 12HI0)
37
= =5 =0.6167....
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For n = 4 we get

101 11 11
S4) = =—+4+—-+4+-+-=—{1684 140+ 120+ 105
) ;4+i 5+6+7+8 840{ * * + 105}
533
= — =0,6345....
840 ’
. . 1
By choosing the function f(z) = 12 we see that
x
i=1 nte = 1+i
n
. . 1 dx . i 1
is a Riemann sum for fo 1tz = In2, and since the length of the interval — — 0 for n — oo, we
T n

get by taking the limit that

1
lim S(n) :/ dr =1n2.
0

n— 00 1+

Example 7.2 The number

M, — iwzm
=1

n3
can be considered as a Riemann sum for some function f(x). Apply the main theorem of the differential
and integration calculus to find
lim M,,.

n—oo

A. Consideration of a Riemann sum. Find the continuous function f which corresponds to this
Riemann sum,

D. Choose some length of the interval and corresponding subintervals. Then find the corresponding
function f.

I. Since
"4 2in i 2n+1
Mn:; — :25. 1

we choose the length of the interval in the n-th step,

2n+1
-

Al’i’n = 5

0 for n — +o0.

n

The i-th subinterval corresponding to the n-th step is

I, = 2n +1

)

2n+1 | .
1, 1=1,...,n.

(i_ 1)7

n2 n2

Download free books at BookBooN.com

104



Please click the advert

Calculus 1c-3 Trigonometric integrals

It follows from the inequality

2n+1

. 20 1—2n-—1 21 2n+1 |
- =24 2T

2 &)

n n n n

2i
that x;, = — € I, ,,. Putting
n ;

fwin) = 1 (%) _ L]

i
— = - Tin
n n 2"

x
we see that we can choose the function f(z) = > independently of all the n € N.

Consider

n

i=1

i=1

S
|

as a Riemann sum for f(z) over the variable interval

"2n+1 om+1 on +1 1
U{ﬂ(in,%z}{m%n}[0,2+E}

_ n2 n n
1=1
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1
Since f(z) = g is continuous and 2 + — — 2 for n — oo, it follows from the main theorem that
n

M, = Zl+2ln fozn szn

i=1
2 272
_ /fdx: - =1 for n — 400,
0 2 4|,

1
because the contribution from the additional interval {2,2 + —] is bounded from above by <
n
1
2. — — 0 for n — +oo.
n

C. TEeST. It is possible to check the result, if we start by proving that

) Ziz%n(n-ﬁ-l).

Formula (5) is obvious for n =1 and n = 2.

Assume that (5) holds for some n € N. Then for n + 1,

Zz-Zz—i— (n+1)=3 (n+1)+(n+1):%(n+1)(n+2),

and the claim then follows by induction.

We conclude from (5) that

- z—|—2m 2n+1 2n+1 1
Moo= S BELS n B Sne)
2 1 1 1 1
= M: 14+ — 1+—) —1 for n — +o0.
2n2 2n n

Example 7.3 Let g < 11 < -+ < Tp—1 < T, be a subdivision of the interval [0,2], and put Ax; =
T; — Ti—1. Find the limit

/4 2
lim E z; - Ax; - -7,
n—oo 1
1=

by choosing a sequence of subdivisions, for which A(m) — 0 for m — oo, where A(m) denotes the
length of the longest interval in the m-th subdivision.

A. A Riemann sum for some continuous function.

D. Find the function, and interpret the limit of the Riemann sum as an integral.
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Figure 3: The graph of f(z) = zv4 — 22, z € [0,2].

I. When f(z) = 2v4 — 22, z € [0,2], it follows that f is continuous, thus

zn:xiAx“M—m? = Zf(xl)Axl — /02 f(x)dx
i=1 ;

2 22
= V4 —22de = =
0 0
1 [ 2 . 1* 1
= — —(4—t)2:| = —
2| 3 — 2

Example 7.4 Let xg < 21 < -+ < Tp—1 < T, be a subdivision of the interval [1,4], and put Ax; =

T; — Ti—1. Find the limit

nl—{gc xzz +3z;+2

7=

by choosing a sequence of subdivisions for which A(m) — 0 for m — oo, where A(m) denotes the

length of the longest interval in the m-th subdivision.

A. Limit for a Riemann sum.

D. Isolate Az;, and then choose a convenient continuous function f, such the the sum can be inter-
preted as a Riemann sum of f. Then calculate the limit by interpreting it as an integral. Here we

shall also make use of a decomposition.

I. First

n

3331—1—4

i 3x;Ax; + 4Al‘l
:L' + 3:51 +2

x? + 3x; + 2

i=1 =1

107
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1.2

08
0.6
04
0.2

3x+4 1 2

Figure 4: The graph of f(z) = g S v Rl + pane 1

x € [1,4].

Therefore, choose the function

3x+4 3x+4 1 2

23 +2 (@r)@t2) 4+l zt2

flx) =

Assuming that A(n) — 0 for n — oo, and interpreting the sum as a Riemann sum for the
continuous function f(z) over [1,4], we obtain by taking the limit that

n

3$1AZ‘Z+4A$1 n 4
I TR T AT _ N A —
dm S S = i Y ) A= [ ) da

4
B 1 2 - 4
—/1 {x+1+$+2}d:c[ln(x+1)+21n(x+2)]1

Q2
50 = In10.

:1r15+2111671112721n3:1112.32 =

Example 7.5 Given the rather incalculable sum

1 4 1 1 1 1 1 1
= -1n
1+(3)?

S, T RO S S
B 0 AR T

1) How many terms does S,, contain? And how does each term behave when n — oo ?

2) Calculate (in decimals) Sy, So and Ss.

3) Find a function, an interval and a subdivision of this interval, such that S, is a Riemann sum for
function in the interval corresponding to the given subdivision. Sketch Si, So and S3 as areas of
polygons.

4) How does S,, behave for n — oo?

A. An incalculable sum interpreted as a Riemann sum.

Download free books at BookBooN.com

108



Please click the advert

Calculus 1c-3 Trigonometric integrals

D. Follow the description above. In (3) we interpret S, as a Riemann sum of an integral.
I. 1) From

2n—1 1 1 2n—1 n
S S N U S,
j=0 J —o T
=014+ (= i=
m

it is seen that S,, contains 2n terms.

3

Furthermore,
1 1< 1 1< 1 1< 1 1 1
5 n oam—1\2 n~ i\? n = o\ n n’
1+ 14 (= 1+ (=
n n n
SO
1 1 1 1
— < <D
n-n

5n i\ 2
1+ <l>
n
Since we have 2n terms in S,,, all satisfying these estimates, we get

2
- <S5, <2
5

LAN/ sPaR
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2) Then by a calculation (yawn!)

1 1
S1o= 1'{@*@}1’5’
1 1 1 1 1 1 1
Sy = 2- —9) 4 44—
? {4+02+4+22+4+32} {4+5+8+13}
~ 1,303846,
Sy = 3 IS S SIS S
5o 9402 9412 1 9+22 9432 9442 9452
1 1 1 1 1 1
= 3{-4 — 4 — 4 — 4 — +— v~ 1239005.
{9+10+13+18+25+34} ’
Figure 5: The graph of the function f(x) = z €10,2].

1+ 22’

0.8

0.6

0.2

Figure 6: The polygon corresponding to 5.

1
3) Put f(l') = m, and

j 1 .
Jij,nzﬁ, ij,n:xj+1,n—a:j7nzﬁ, ]2071,...,271—1.
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Figure 7: The polygon corresponding to Ss.

Then
O:xO;n < ZTin <"'<$2n—17n:2__ >2:x2n,n
n

is a subdivision of the interval [0, 2], and we can interpret
2n—1
Sn=Y_ f(@jn)Azj,
=0

1

as a Riemann sum of the integral f02 1522 dz. T have here sketched the polygons for S; and
x

So. The sketch of the polygon for Ss is left to the reader.

1
4) If Az, = — — 0, L.e. if n — oo, then
n

2n—1
lim 5, = le‘ffl_,o Z f(@jn) ATy
j=0
21
= / ———dx = Arctan 2 (= 1,107149).
o 1+a2

Example 7.6 Derive by means of the main theorem of the differential and integration calculus the
formula of the area of a disc of radius R. This is done by dividing the disc into small parallel strips
and then continue in two different ways: First use an angle as the variable of integration, and then
use a distance as a variable of integration.

A. Derivation of the area of a disc.

D. We may assume that R = 1, because the general result then is obtained by a multiplication by
R2.

Download free books at BookBooN.com

111



Calculus 1c-3 Trigonometric integrals

T

05 05 /ﬂ

Figure 8: Subdivision of the unit disc, partly into strips, partly by means of a radius, given by an
angle.

I. At the height y =

NP
2
~—/1— (J> .
n n
Since the union of all these strips cover the upper half disc which only a small extra area (tending
towards 0 for n — +00) we get

area %QHZ: Q/l— < _42 \/1- —>4/ V1—22dz.
Jj=

Expressed by the angle we get

i\?
1—|=] =cost;
<n) cost;,

where the height is

,7=0,...,n—1, we cut a parallel strip out of the disc of area

3 |u.

S tj+1 — sintj ~ COStj . (tj+1 — tj),
hence

n SN\ 2 n
1
area ~ 4 E - 1- <%) ~ 4 E costj-costj - (tj41 —tj)

j=1 j=1
@

5 ) (1 1
— 4 cos“tdt =4 — + — cos2t pdt

11 2
- 4 {2t+4sin2t]o :2-g+0=7r.

We conclude that the unit disc has the area 7, hence the disc of radius R has the area m R2.
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Example 7.7 Find by means of the main theorem of the differential and integral calculus the length
L of the parabolic arc y = 2%, 0 <z < 1.

A. Length of an arc.

D. Approximate the parabolic arc by a piecewise linear curve and find the length of the latter by
means of Pythagoras’s theorem. When the subdivision is made finer one gets better approximations
of the curve length.

Figure 9: The curve y = 22 with one single subinterval and approximating segment.

I. The secant between the points of the curve

. .2 . 1 . 1 2
I o (L UEDTY g
n’' n? n n?
has by Pythagoras’s theorem the length
1 i+1)2—52)° 1 2j +1)2
RN €0 bl ) Y ORI C e i
n2 n?2 n n?2
hence the arc length is approximated by
1 (2j +1)2 ?
~3 1+ j+ 1M+4( )
j=0 n

because

[ @2j+1?2 | i\ 2
1_1_#_ 1_;’_4(1)
n n
- 2 '2
(2 1
1+ ]+ M1+4
1

4 1
2—4—|—1) ;—z = +W—>O for n — oo.

Download free books at BookBooN.com

113



Please click the advert

Calculus 1c-3 Trigonometric integrals

Now,
n—1 1 SN\ 2 1
Z— 1—|—4<l> —>/ V14422 dx for n — oo.
=0 n n 0
. N 1.
By choosing the monotonous substitution = = 3 sinh ¢, we get the arc length

1 1
1
L = /\/1+4x2d1::/ \/1+sinh2t~§coshtdﬁ
0 =0

I I
= —/ cosh? t dt = —/ (1 + cosh2t)dt
2 =0 4 T

=0
1 1
= - [Arsinh 2z} + g [sinh 2t):

1
[ln (Qx +V4x? + 1)} + 1 [sinht - cosht]l_,
0

In(2 +v/5) + i 20 V1 + 4552};

In(2 +V/5) + ?

N N N e Y

Design your
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Example 7.8 Let P be a point in the first quadrant of an XY coordinate system with origo O. Put
OP = r, and let v denote the angle (measured in radians) from the X axis to OP. The set of all
points P, for which r = v, defines the curve, which is shown on the figure.

Find the length s of this curve. This is done in the following way: Consider two neighbouring points
on the curve, P and @Q, where the angle from the X axis to OP 1is v, and the angle from OP to
0OQ is Av, where Av > 0, i.e. small. First prove that the arc PQ approximatively has the length
As = /1 +v?% Av, and then find s by a summation.

A. Curve length by a Riemann sum and a limit.

D. Sketch and analyze the figure. Find an approximative value of the length of a curve segment.
Notice that the curve is given in polar coordinates. Set up a Riemann sum and go to the limit.
Finally, calculate the integral by choosing a substitution.

010102703704 05

Figure 10: The curve given in polar coordinates by r = v.

I. The curve is given in polar coordinates by

7r
r=uv, UE[O,g}.

Choose v € [0, g [ and 0 < Av << 1, such that v + Av < —. Then P(v) is given in rectangular

coordinates by

vl 3

r(cosv,sinv) = (v cosv,v sinw),
and P(v 4+ Av) has the rectangular coordinates

(r+ Ar) - (cos(v + Av),sin(v + Av))
= ({v + Av} cos{v + Av}, {v + Av}sin{v + Av}).

The length of the arc between P(v) and P(v 4+ Av) is approximated by the length of the cord
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between these two points:

Al = |P(v+ Av) — P(v)]

= V{(v+Av)cos(v+Av)—v cosv}2+{(v+Av) sin(v+Av) sin(v+Av) —v sinv}2

= (v+Av)2+v2 —20(v+Av){cos(v+Av) cos v+sin(v+Av) sinv}
= (v+ Av)2 + 02 — 2v(v + Av) cos(v + Av — v)
= (v + Av)2 402 — 2v(v + Av) cos(Av)

Q

\/(U+Av)2 + 02 — 20(v + Av) {1 - % (Av)z}

= /202 + 20Av + (Av)2 — 202 — 20Av + v(v + Av)(Av)?

= AvvV1i+vZ+vAvx Avv1+02,

i.e.
Al = /1 +v2 Av.

Let

T
0=1vy <1 <"'<'Un<vn+1:§7
c m

be a subdivision of [O, 5}, and put

Avi:viﬂ—vi, iZO,L...,’Il.

Then the curve length ¢ is approximatively given by

i=0

i=0

the latter expression is a Riemann sum for fog V1 + v? dv, hence

n—-+o0o

n %
¢ = lim Z 1—|—vi2Afui=/ V1+v2do,
i=0 0

where we have assumed that Av; — 0 by this limit.

We calculate the integral by using the monotonous substitution

2
v = sinht, te [O,Arsinh g] = [O,ln <g+\/1+%>] .
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Thus

. ™
Arsinh 5

2
V1 + sinh?¢ cosh t dt

[ME]

~
I

\/1+v2dv:/
0

. ™
Arsinh &

9 Arsinh bl 1
cosh” tdt = / 5 {cosh 2t + 1} dt
0

Arsinh 5
om
Arsinh b

1 1
{— sinh 2t + t} = —[sinht - cosht + 1],
2 0 2

Arsinh 5
[Sinh t-V1+sinh?t+ t] :
0

V1+W2+1 LY PP
—+In| = — .
4 2 4

4
Example 7.9 A ball of radius R has the surface area A = 47R? and the volume V = 3 7R3, We

|
NI = NI N e S S

ol

d
note here that % = A. Give reasons for this formula by assuming the formula of the volume.

A. A direct derivation of a formula.
D. Consider the volumes V(R) and V(R — AR).

I. The volume of the shell between the radii R — AR and R is approximatively given by
V(R)—V(R—AR) = A(R) - A(R),

from which

V(R) — V(R — AR)
AR

Then by taking the limit AR — 0+ we get

~ A(R).

av.

— = A
dR

Example 7.10 Find the Riemann sum S(n) of the function y = 23, x € [1,4], corresponding to
a subdivision of the interval [1,4] into n equal parts. Calculate S(2) and S(3), and take the limit
lim,, o S(n). Write a MAPLE programme which defines the function S(n).

A. Riemann sum of a given function.

D. Start by defining the subdivision.
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4—-1 3
I. Let n € N be given. Then Az = = —, and the points of division are
n

n

.
1+, j=01,....n
n

We get our Riemann sum by e.g. choosing the values of the function in the right end point of each
subinterval, so

Sn) = Y f(l+jAz)-Ax
j=1
n -\ 3
= Z<1+3—‘7) Bn— > <1+3—‘7) .
o n n] T n
Student Student Money A Happy
Discounts Events Saving Advice Days!

£
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In particular,

s = 33003 =3 {0 8) 043
5
2

Jj=1
3 3 3 (125 3
= 2 35 =025 464 = — {125+ 512
2{( +}2{8+}16{ +512}
3 1911 7
= 15 8= T
and
3 3 3]. 3 3
_ _ N3 __ o3 3 3
S(3) = §Z<1+§> —Z(l—F]) =23 +3%+4
Jj=1 =1
= 8+427+64=099.
Then
4 474
x 1 3 255
li = Sdr= 2| =64—=- =632 =%
ner;OS(n) /lx x {4}1 6 1 634 1

and since we always take the maximum value in each of the subintervals, it follows that S(n) is
decreasing.

A MAPLE programme is e.g.

sum((1+3%j/n) "3,j=1..n).

Example 7.11 Write a MAPLE programme which calculates a Riemann sum of the function
f(x) =1+ sin 2z, x € [0,7],

corresponding to a subdivision of the interval [0, 7] into 100 equal parts.

A. Riemann sum; MAPLE programme.

D. Describe the subdivision and choose the right end point of each subinterval.

I. Let Az = i, and
100

g .
= =0,1,2,...,100.
x] 1007 J ) Lty S )

Then we get the Riemann sum

100

T L
S(lOOFE;1 1+ sin <%>

and the corresponding MAPLE programme is
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evalf (Pi/(100)*Sum(sqrt (1+sin(j*Pi/50)),j=1..100));

By taking the limit n — oo we get

lim S(n)

n—0o0

/ V1 +sin2z de
0

™
/ \/0052x+sin2x+2cosx sinzx dx
0
™ T
/ v/ (cosx + sinx)? dx :/ |cosx + sin x| dx
0 0

\/5/; dm:\/i/oﬂcos(x—%ﬂdx

37 37
a4 a4
cosxdx—ﬁ/ cosxdx
I z

v
— V2[sina]? :\/5{1+%—%+1}

= 2V2.

.
— sinx
2

1
—= COST +
V2 V2
x
|cosz|dx = \/5/

N

3

— V2 [sin z]

w3 P‘

g
4

Example 7.12 A domain A in the plane is given on the figure.

Figure 11: The domain A of radius vector ¢(0), corresponding to an angle 6 € [«, 3].

We are given two angles o and 3, o < 3, 8 — «a < 2w, and a continuous function ¢ : [a, f] — R.
Corresponding to every angle 6 € [a, 8] consider the half line of direction 6 and the points on this half
line, where the distance from O is smaller or equal to ©(0). In this way we get the set A, and the task
is to find a formula of the area of A.

1) Divide the interval [a, 8] by the points Oy, 01, ..., 0,,. The area corresponding to the interval
[0:—1,0;] is then approxzimated by the circular sector given on the figure.

Find this approzimation of the area of A.

2) Then set up a formula of the area of A.
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0.4

0.3

02

0.1

Figure 12: An approximative circular sector.

A. Area in polar coordinates with guidelines.

D. Follow the guidelines.
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I. 1) Let a =0y < 01 < --- <6, = be the division points. the area of the sector between 6,1 and
0; of radius ¢(6;) is

0; —0;_ 1
T(6;)° - Tl =3 0(60:)° ;.

Therefore, a Riemann sum of this area is
1 n
M, =3 ng(&i)z Ab;.
=1
2) Then by taking the limit we see that this Riemann sum converges towards

1 [P )
A=5/ (0% db,

when n — +o0o and Az; — 0.

Example 7.13 We shall here derived the formula of the length of a graph. Consider a differentiable
function f :[a,b] — R, and let ¢ denote the length of the graph of f(z).

Figure 13: Approximation of a graph by a broken line.

1) Divide the interval [a,b] by the points xg, 21, ..., x,. Corresponding to the interval [x;_1,x;] we
approzimate the length of the graph by the length of the line on the figure.

Show that this approximation of £ can be written

by = Z Vi@ —zim1)? + (f(wi) — f(wi1))?

2) Let Ax; = x; — x;—1. Apply the mean value theorem to prove that ¢,, can be written

b= 3"\ (a)? + (F(6) Ay,
=1

where & € |xi—1,x4].
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3) Find a formula of the length { expressed by means of an integral.

A. Derivation of a formula of a curve length with guidelines.

D. Follow the guidelines.

I. 1) The curve segment between (z;_1,f (z;—1)) and (z;, f (x;)) is according to the Pythagoras

theorem approximated by a line of length

\/(Il — 1)+ {f(@:) — flaim)},

thus the approximation of the total length is

o= \/(331‘ — 1)+ {f) = flem)}
i=1

0.4

0.8

Figure 14: Geometric interpretation of the mean value theorem for a single subinterval, &; € Jx;_1, ;.

2) Tt follows from the mean value theorem for differentiable functions that

flag) = flwiy) = /(&) - {wi —wia}

for some §; €

I

s
Il
-

b, =

|

@,
Il
-

I
M=

s
Il
-

VIAz) +{1(6) Az

V14 {6} Az,

V@ — w0 + {f(@) — fwin))?

xi—1,;[. Putting Az; = x; — 2,1, we get by insertion

123
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3) The latter expression of (2) indicates ¢,, as a Riemann sum of the integral

b
Zz/ V14 f(x)?de.

Since ¢,, — ¢, when n — +o0o and Az; — 0 during this limit, we have obtained our formula of
the curve length of a graph.

Example 7.14 Let P be a point in the first quadrant of an XY coordinate system with origo O. Put
OP =r, and let v denote the angle (measured in radians) from the X axis to OP. The set of points
P, for which r = v, defines the curve, which is shown on the figure.

07102703 70.4 05

Find the area A of the domain which is defined by the curve and the Y axis. Proceed in the following
way: Divide A into “narrow” subdomains by means of line segments from O to various points Py,
Py, ..., P, on the curve. Approrimate the area of the narrow subdomain OP;P;y1 by the area of a
circular sector of radius = P; and then perform a limit.

A. Area in polar coordinates.

D. Follow the given guidelines and finally take the limit.

1
I. A sector of radius r(v;) = OP; has approx. the area 3 r(v;)?Av;, i.e. the total area is approxima-

tively given by
1 ) 1,
Z —r(v;)*Av; — —r(v)*dv for Av; — 0.
—~ 2 0 2
We conclude that the area is given by

31 9 1 %2 1.4z 3
Az/o 57"(1)) dv=§/0 vdvzé[v]g:4—8.
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Example 7.15 We are given in a rectangular coordinate system the points
P: (x,coshz) o9 @Q: (xz+ Az, cosh(z+ Azx)),

where Ax > 0. Explain that the distance PQ satisfies

— — coshzx for Ax — 0.
Ax

Then exploit the relation
PQ ~ Az - coshx for Ax small,

followed by taking a limit and an application of the main theorem of the differential and integral
caleulus to find the length of the graph of the function y = coshz, x € [0,1n2].

A. Curve length.

D. Sketch a figure, and consider a rectangular triangle. Then proceed with the guidelines.

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
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Figure 15: Approximation of the curve length by the hypothenuse of a rectangular triangle, where
one of the shorter sides has length Az and the other one cosh(z + Az) — cosh z.

I. Let Az > 0. Then by the Pythagoras theorem we get for the approximating cord PQ,

PQ = +/Az?+ {cosh(z + Azx) — coshz}?

2
A\/l N {cosh(:c+A:c) coshx} '
Az

h Ax) — h d
cosh(z + Az) — cosha — — coshz =sinhz for Az — 0,
Az dx

it follows by taking the limit that

P h(z + Az) — coshz | ”
Q lim \/1+{cos (x + Ax) — cos x}

m  ——
Az—0+ Az Ax—0+ Az

g _ g 2
\/1 N { lim cosh(z + Ax) coshx}
A—0+ Az
= V1 +sinh®z = coshz.

Then by a convenient subdivision we see that the curve length is

Since

In2
IS ZAaﬁijPjH = Zij coshz; — /0 cosh z dx,
J J

for j — oo and Az; — 0. This implies that the curve length is

In2
‘= / cosh z dz = [sinh z]?
0

1 1 3
= sinh(ln2)=- (2—- ) =-.
sinh(In 2) 2( 2) 1
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8 Moment of inertia

Example 8.1 Let I denote the moment of inertia of a body L with respect to an azis of rotation a.
Divide L into two sub-bodies Ly and Lo, the moments of inertia of which with respect to a are denoted
by Iy and Iy. Prove that I = I + I5.

Use this formula the moment of inertia of a thin, homogeneous, straight rod of length ¢ and mass M
with respect to an axis which is perpendicular to the rod at its midpoint.

A. Moment of inertia.

D. Exploit that the moment of inertia with respect to a fixed axis of rotation is additive with respect
to a disjoint subdivision of the body.

I. Let the density at a point be given by m(x), and let £(x) = dist(x,a) be the distance from x to
the line a. Then

= mx~x2
1= [ -2 ae

= (x) - £(x)? dQ + (x) - £(x)?dQ = I) + I.
Ly Lo

-{1 05 0 05 ’

02

-04

Figure 16: A homogeneous rod along the x axis of length ¢ = 2 where the y axis is chosen as the axis
of rotation through the midpoint of the rod.

M
Assuming that the rod is homogeneous, the density is m(x) = e Place the rod along the z axis,
I

represented by the interval [5, 5] .

l L
Let L1 = [O, 5} and Lo = [—5,0]. Then for symmetric reasons, I; = I, so
£

: M M 1 (e\* M
1221 :2 _ 2 :2_._. — :_2.
1 /0 x*dz 73 () 12[
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Example 8.2 In a rectangular coordinate system XY in the plane we consider the points
A: (0,0), B: (2,0) og C: (2,4).
1) Find the area of the domain O, which is bounded by the parabolic arc
y = a2, x €10,2],
and the line segments AB and BC.

2) Consider the domain O as a thin homogeneous plate P of mass M. Find the moment of inertia
of P, when X is the axis of rotation.

A. Area and moment of inertia. This example is almost the same as Example 8.5. The only difference
is the axis of rotation.

D. Sketch the domain and analyze.

Figure 17: The domain O.

I. 1) From the sketch follows immediately that
2 3 2 8
areal(O) :/ 22 dr = [x_} =-.

0 3 1o

M 3M
2) Th ity is ———— = —.
) The density is arcal(0) 5

For fixed z € [0,2] we get the moment of inertia of the line segment y € [0,2?] over z,
ﬂ/’“’2 sy = SM [P M
s Jo VYT s e, T

Then the total moment of inertia is obtained by gathering all projections of the moments of
inertia onto the X axis, i.e.

2 712 7

M M M 2 1

I:/—dex:— gy M2 16,
0o 8 8 0

Download free books at BookBooN.com

128



Please click the advert

Calculus 1c-3 Moment of inertia

Example 8.3 We consider in a rectangular coordinate system XY in the plane a thin homogeneous
rod of length L and mass M. The end points of the rod have the coordinates (a,0) and (a, L), where
a > 0 is some given number.

0.5

Find the moment of inertia of the rod, when the axis of rotation is perpendicular to the XY plane in
origo.

www.job.oticon.dk O‘l.'l con

PEOPLE FIRST

Download free books at BookBooN.com

129


http://bookboon.com/count/pdf/346303/129

Calculus 1c-3 Moment of inertia

A. Moment of inertia.

D. Analyze the distance function.

05 -

Figure 18: The distance from (0,0) to a (a,y) on the rod is \/a? + y2.

M
I. The density is T A point (a,y), y € [0, L], on the rod has the distance \/a? + y2 from (0, 0), thus

the moment of inertia is

M [F M L3 L2
I==— 2y =— (dPL+ =) =M[a®>+=).
L/O{aer}y 7 (a +3> <a+3

Example 8.4 A homogeneous plate P of mass M has the shape of a rectangular triangle ABC, in
which the shorter sides AC' and BC' both have the length a. Find the moment of inertia of P with
respect to the axis of rotation ¢ through A, which is parallel with BC'.

-0.2 0.2 0.4 0.6 0.8 1.2
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A. Moment of inertia.

D. Find the density. Place the coordinate system, such that ¢ lies along the ordinate axis and AC
along the abscissa axis. Find (apart from the factor Ay) the moment of inertia for every fixed
y € [0,a] of a thin “rod”, which is given by = € [y, a]. Finally, we “collect” (i.e. we integrate) all
these y contributions of the moment of inertia.

2M

1
I. Since the area is 3 a?, the density is m = —-.
a

Keep y € [0, a] fixed. Then the corresponding moment of inertia is (leaving out the factor Ay)

2
a oM [237% oM . . 1 oM
2 3 3 3
der = — || == - == Ma— == ¢
/y TOE e {3L 3.2 (@ =g Ma— g5y

When we integrate this expression with respect to y, we get the moment of inertia

“ (2 2M 2 M
I = / “Ma- =y vdy=-Mad*> - — -a*
0 a? 3 6a?

3 3
2 1 1

= (2 -2)Mad?==Md
3 6 2

Example 8.5 Consider in a rectangular coordinate system XY in the plane the points
A: (0,0), B: (2,0) og C: (2,4).
1) Find the area of the domain O, which is bounded by the parabolic arc
y =2, z €10,2],

and the segments AB and BC'.

2) Consider the domain O as a thin homogeneous plate P of mass M. Find the moment of inertia
of P, when the ordinate axis is chosen as axis of rotation.

A. Area and moment of inertia. The example is very similar to Example 8.2. The only difference is

the axis of rotation.
D. Sketch the domain and analyze.

I. 1) By the sketch we get
2 372
8
area(O) :/ 2 dr = [x—] =-.
0 31, 3

M
2) The density i = —.
) The density is aroa(0) 3

Download free books at BookBooN.com

131



Calculus 1c-3 Moment of inertia

We get for fixed y € [0,4] the moment of inertia of the line segment = € [,/y,2] over y,

M [? M [2%]° 1
3—/ :c2d:c3{x} M{lyg}.
8 Vi 8 3 i 8

The total moment of inertia is obtained by collecting all the projections of the moments of
inertia onto the ordinate axis i.e.

4 4
1 1 2
0

I

<
—

o~

|
oy

w

[\
——

Il

<
—

o~

|
o] oo
— %

I
R

<

Example 8.6 Find the area A of the domain O in the XY plane which is bounded by the curve

1
y:727 1§£E§2,
x

and the X axis and the lines x =1 and x = 2.
Consider the domain O as a thin, homogeneous plate of mass M. Find the moment of inertia of the
plate, when the line x =1 is the axis of rotation.

A. Area and moment of inertia. The example is very similar to Example 8.7. The only difference is
the axis of rotation.

D. Sketch a figure. Find the area by an integral. Find the moment of inertia.

I. The domain O has the area
2 2
1 1 1 1
A: —d: _— :1——:—.
=] =12

M
The density is 1 2M.
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0 055 15

Figure 19: The domain O.

1
When y € [0, Z] is kept fixed, then the moment of inertia of the corresponding z-interval [1, 2] is

given by

zM/ (a:—l)de:QM/ tht:T.
1 0
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1 1
When y € [Z’ 1} is kept fixed, then the moment of inertia of the corresponding x-interval [1, 7_}
Y
is given by
7 75! oM [ 1 ’
Y Y
2M/ (x—1)%dz = 2M tht:—{——l}
1 0 3 \/ﬂ
2M
= —{ -4 313, 1}
3 Yy

Integrating with respect to y we get the total moment of inertia

1
oM oM [t s 3
I = / —dy + —— y_%——+3y_%—1 dt
0 3 3 1 y
oM 1 2M [ 2 !
= o S 3 lny+6yy—
3 113 { 7 y+6vy y]i
oM (1 1 1
= . _2946-14+4-3n4—6-~-+ -
3 {4 +6 + 3 1n 6 2+4}
oM (1 M

Example 8.7 Find the area A of the domain O in the XY -plane, which is bounded by the curve

1

= — 1<e <2,
x

and the abscissa azxis and the lines © =1 and z = 2.
Consider O as a thin, homogeneous plate of mass M. Find the moment of inertia of the plate, when
the line x = 2 is the axis of rotation.

A. Area and moment of inertia. The example is similar to Example 8.6. The only difference is the
axis of rotation.

D. Sketch a figure. Indicate the area as an integral. Finally, calculate the moment of inertia.

I. The domain O has the area
2 2
1 1
PR RN Y
1T Ty 2 2
The density is % =2M.

1
When y € {O, ﬂ is kept fixed, then the moment of inertia of the corresponding a-interval [1, 2] is
given by

2 1
2M
2M/ (2—x)2dx:2M/ tht:T.
1 0
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1
When y € [47 1} is kept fixed, then the moment of inertia of the corresponding z-interval [1,

7

is given by
7 2M L 2M
2M/ﬁ(x—2)2dx = D@-2P8y =22
. 3 3
2M _s 6 _1
= —ql—-—y 24+-——12y" 2 +8,.
3 Yy

Integrating finally with respect to y we get the total moment of inertia

8.8 Find the moment of inertia of a homogeneous disc of mass M and radius R with respect

oM 1 2M [! 6
I = —~7+—/ 9—y_%+7—12y_% dy
3 4 3 1 Y
oM |1 27 2 !
= —< -4+ —+|—+6lny—24
3{4 1 L/@ Y \@L}
2M
2M
= —{12ln2-7}.
3
Example
to an axis

A. Moment of inertia.

of rotation perpendicular to the plane of the disc through its centre.

D. Sketch a figure and analyze. Set up a Riemann sum and take the limit.

I. The area of the circle is 7 R?, and the circle has a homogeneous layer of mass. Hence, the density

M
TR2

is

135
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Figure 20: A thin annulus cut from the unit disc.

Consider an annulus of inner radius r» and of thickness Ar, where 0 < Ar << r. The mass of the
annulus is

M M 2M

R {r(r+Ar)* —ar*} = o2 {2rAr + (Ar)*} ~ b rAr.
Then split the annulus into small pieces of e.g. the same size (with respect to the angle). Since
each piece gives equal contribution to the moment of inertia, we can treat the annulus as a whole.

1
When e.g. the annulus is split into m pieces of equal size, we get the contribution — of the total
m

from each of them, and m - % = 1. The moment of inertia of the annulus is then approximately
r2. {QR—]\g rAr} = 2R—]\24r3 Ar.

Let
O=rg<rm < <rp<rps1 =R

be a subdivision of [0, R], and let
Ar; =rie — 1y, 1=0,1,...,n.

Since the disc is split into annuli of the type described above, we get

n

oM IM N
I%Zﬁrl A'f‘i:ﬁzri A"’i.
=0 =0

This expression is a Riemann sum for some integral, hence by taking the limit Ar; — 0,

M N oM (R, oM [ MR?
I= i T 2 A= G | =T | =

4

0

Example 8.9 Find the moment of inertia of a thin and homogeneous disc of mass M and radius R
with respect to an axis of rotation which is a diameter of the disc.

A. Moment of inertia.

D. Analyze a figure. Set up a Riemann sum for an integral and take the limit.
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Figure 21: The unit disc is rotated around the ordinate axis.

I. The area of the circle is 7R?, and the mass M is spread homogeneously over the disc. Hence, the

density i M
ensity is —.
Y TR?

Let v € [0,7] and 0 < Av << 1, such that v + Av < 7. Consider the domain between the two

vertical lines on the figure. Then the distance to the axis of rotation is approximately R coswv, and
the mass is approximately

M
—— R sinv{R cosv — R cos(v+ Av)}

mR?

M

= — sinwv {cosv — cos(v + Av)}
T

= — sinv{cosv — cosv - cos(A) + sinv - sin(Av)}
7r

= — sinwv {sinv - sin(Av) + cosv [1 — cos(Av)]}
7r
M

~ — sin?v - Av,
7r

because
1
1 —cos Av ~ 5 (Av)? og sinAv~ Av,
when Awv is small.

Then split the domain between the two vertical lines into small pieces of the same masse. However,
since the disc is homogeneous, this step is no longer necessary. The moment of inertia of this strip
is approximately

2 M 2

M
R%cos?v - — sin?vAv = sin? 2v Av =
T T T

(1 — cos4v) Av.

Let

0:’00<'U1<"~<’Un<’l)n+1:71'
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be a subdivision of [0, 7], and put
A’Ui=1)i+1—’Ui, i=0,1,...,n.

If we split the disc into strips as above according to this subdivision, then an approximative value
of the moment of inertia is given by

MR?
8w

I~ Z{l — cos(4v;) } Av;.
=0

When Av; — 0, the Riemann sum converges towards the moment of inertia, i.e.

MR?* & MR? [T
I = lim n Z(l—cosélvi)Avi: u / (1 = cos4v)dv
Av;—0 871' i—0 U 0
MR? [ 1. ]" MR?
= v— — sindv| = .
8T 0 8T
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Example 8.10 This example is also about the moment of inertia.

Figure 22: Three masses lying on a straight line, where 0 indicates the origo of the ordinate axis.

Given a system of finitely many masses my, ma, ..., my, lying on a straight line, and let r; denote
the distance from the origo to the mass m;. The moment of inertia with respect to the origo for this
system is defined by

k

6) I= Zmir?.

i=1

Figure 23: A thin, homogeneous rod of mass M and length L, with its midpoint 0.

Consider a thin, homogeneous rod of mass M and length L. We shall find the moment of inertia J
of this rod with respect to the midpoint 0.

. . L L ) . .
1) Subdivide the interval 373 by the points xq, x1, ..., xx. Corresponding to each subinterval

[€i—1,2;] we let the corresponding mass be concentrated at the point x;. Write by means of (6) this
approximation of the moment of inertia J.

2) Then apply the main theorem of the differential and integral calculus and derive the formula of the
moment of inertia J expressed by means of L and M.
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A. The setup of a model for calculation of the moment of inertia by means of Riemann sums. A
guideline is given.

D. Follow the guideline.
D. 1) When the rod is homogeneous of mass M and length L, then the density is T The mass in
the subinterval [z;_1,x;] is therefore

M M
m; = f (l‘z — xi,l) = f Al‘l

This gives the approximation

k k k
I= Zmzr? = Z%A% cx? = %Zx?Amz
i=1 i=1 i=1

of the moment of inertia J as a Riemann sum.

2) When Axz; — 0 for k — 400, we see that this Riemann sum converges towards

L 3
M [% M [a? M1 (L 1
J== 2dr=— |2 =2 .2 9(2) == MIL2
L/_gm T [3]L L3 <2) 12

[\

o
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9 Mathematical models

Example 9.1 Send a current i = e=, t > 0, where s is given, through a capacitor. To time t = 0
there is no charging in the capacitor. Find the charging in the capacitor when the time is infinite. Use
that the current of a file is the charging which passes through a cross section of the file per time unit.

A. A mathematical model.

d
D. Use that ¢ = d—?, where Q(t) is the charging to time ¢. In particular, Q(0) = 0.

I. From i(t) = e=** we get the equation

dQ ___—st _
% =e€ ) Q(O) - Oa
from which
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Example 9.2 Consider a particle of mass m, moving on a straight line under the influence of a
so-called Coulomb potential

where k > 0. Here x = x(t) denotes the distance of the particle from the point 0 to time t. (A coulomb
potential can e.g. be created by an electric charging or by a mass).

-2

k
Figure 24: The graph of the potential function V(z) = ——, = > 0.
x

The particle moves from xo towards the point 0 with a negative velocity, and we assume that the
particle to time t = 0 lies at the point xg. It follows from the theorem of conservation of the energy
that

(7) %m{E}QJFV(x) — K, t>0,

where K is a constant. We consider the case where K > 0.

We shall take all this for granted. The task is now to find the time T it takes for the particle to move
from the point xq to the point 0.

1) Let Ty denote the time it takes for the particle to move from the point xq to the point x1. Prove
that

Ty 1
o 7—K
V{E

k
2) Calculate the integral above by using the substitution t = / — — K.
x

3) The time T is given by
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Find T

4) The time T depends on the constant K from (7), thus it (of course) depends of the velocity of the
particle at the point xo. Derive from (7) this velocity ©'(0) expressed by means of K, and then find
the limit of T, when z'(0) — 0.

A. By (7) we are given a non-linear differential equation for x in ¢. We shall find an expression of the
inverse function t = ¢(z).

d
D. Find d—f from (7). Show that the inverse function exists and is given by (1). Then follow the

guidelines of the example.

d k
I. 1) It follows from the assumption d_j < 0 and V(z) = —— and (7) that
x

{i—f}zé Cx-vey=2{f-x}>0

dx /2 [k k

This shows that x(¢) is monotonous, so the inverse function exists, and
at  [dx
dt

-1 m 1 c o k
- = R = — e xr — | -
dx 2 L ’ 'K
- —K
x
Then we get by an integration starting at x,

T1 = t(.’l?l) ==

m [} 1 k
— /= — dx, xo,xle}o,—[,
2 /x [k X K
x
where x1 < xg.
k k T .
2) Whent =4/ — — K for z € |0, — |, we see that the substitution is monotonous with the range
x

K
R4, and

k 2kt
= — dvs. dr = ——— dt.
x ek Vs x TENRE
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Hence,

£ K
1 2kt
T, = ,/ - dt
! t (K +12)?
k oK
_ ke fm Y 2 dt
K2 2 k. _ )2)2

; tzq/%fK
k m VK ( t )
= —=/= + Arctan | ——=
KVE V2 ( ‘ )2+1 \VE
\/E t=./k K

t=,/E K
_ m [ ¢ Arctan <t)] "
- KV2|e2+K ,/_ VK] 5%
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3) Then by taking the limit 21 — 0,

T = lim t(.i?l)
r1—0

||

o

|
=| =
ol 3

§
ﬁ

|

=

T———U—A t{1/—=——-1] ——=1/% -k — K22,
\/_ 5 rcco ( o > 5 o n)

4) When ¢ = 0, it follows from (7) that
1 k
K=—- P+ —=—>0
5 m{z'(0)}* + o >0,
ie.

1 2 k
Kxoz—imxo{x'(O)F—&-k and 2'(0) = — E”x_o_K’

where we have assumed that z’(0) < 0. Hence by insertion,

T = F 3 Q/E-Arccot ™ b -1
{k_m Pz k= 5 {a/(0) Yo

1 m 1
_ﬁ— 1/5 . \/lmo — kxo + 3 mzo{z’(0)}2,

P A I

which can be further reduced. However, there is no need to do this because we directly get for
2'(0) — 0,

T = i = . Arceot \/E—l -0
k V 2 k
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Example 9.3 The gravity on a particle of mass m at the distance x from the centre of the Earth is
—» where K = GM s the product of the constant of gravity and the mass of the Earth.
x

What is the work needed to move the particle from the surface of the Earth to infinity? (Work =
force - path).

given by K -

A. Mathematical model of the law of gravity.
D. First find the infinitesimal work from x to x + Ax.

I. Let R denote the radius of the Earth. There is no need to specify this further, since neither G' nor
M are specified by numbers. Assume that the particle m is at distance z > R from the centre of
the Earth.

The work needed to take the particle from x to x + Ax is then

Km

AA%K~E2-A37, dvs. dA=—dz,
x x

from which
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Example 9.4 Consider a particle, which falls towards the surface of the Farth from a height, only
under the influence of the gravity. We shall in this example derive a formula for the time T it takes
for the particle to hit the surface of the Earth.

Figure 25: A particle falls from H (the rightmost point) towards the Earth (the circle).

Denote by H the distance from the centre 0 of the Earth to the place, from which the particle starts

falling, and denote by R the radius of the Farth. Let x denote the actual distance from the point 0 to

the particle. Then it can be shown by Newton’s laws that

o -1
T= hHIl{ - - dx.
y—H J,

29R? ([ — — —
g r H

We shall here take this for granted.
1) Calculate the integral

x
—dux, 0<z<H,
/ VHz — 22
H H
by introducing the substitution x = > + 5 COS U.

2) Prove by means of this that

T:11/25{\/RH—RQ—l-gArccos(QRI;H)}.
g

R

A. By analyzing the formulation we see that the task can be reduced to

1. an integration,
2a. a rearrangement,
2b. a limit.

Some guidelines are given.

D. Follow the guidelines.
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I. 1) When z €]0, H[ we see that

H n H H (14 ) c } T T [
r=—+ —cosu=— cos U U -, -
2 2 2 ’ 27 2L
is a monotonous substitution with dz = Y sinu du, sinu > 0. The inverse function is given

by

2x
u= A ——1].
rccos ( 7 >

Then by insertion
x x
[ meto= [ o
VHzx — x? Va(H —x)
H
— (14 cosu) - (—

_ / 2
U= rccos( £E — H
A (2H 1) \/5(1_’_(:08“)

0| X

sin u)
d

(1 —cosu)

U

| T

7\ 2
<5) (1 + cosu)sinu
= —/ T du
u= Arccos( 2 —1) ? 1—cos2u
I .
_ _H (1+cos.u)smudu
2 u= Arccos(% —1) + smu
H 2 2
= -5 {Arccos (g — 1) + sin (Arccos (ﬁx — 1))}
H 2x 2x
_ 4 b P “r
5 {Arccos (H 1) + \/1 cos (Arccos (H 1))}
a Arcco 2x 1)+4/1 2 1 ’
p— —_—— r S —_— -— — —
2 "\H 0
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C. TEsT. By differentiation we get

A v s )

 H)2 1 H-2 1 2
2 H 2 aH-a) 2w N\
Ji- ()
1 H —2x 1
= +
2 Jz(H-2x) \/2_1- (2_ 2_33)
H H
B © H 1 H 1
T VHz-22 2 x(H—x)—i_E' z(H —x)
x
= = QED
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2) By a rearrangement and an insertion of the result from (1) we get

T = lim

*)H

! V29R? - ,/l—i
x

— lim/ _ @

\/QgR2 y—H ), |H—=x
xH

vVH . —

——— lim —dx

V29 R y—H ), VHz— 22

_ [ / _ 2 “t

= R % yh—»HIli|: Hx — 2?2+ — Arccos(H )]

= 1/ {\/HR R2 + — Arccos<2R H)}
R
fi i + A 2_yf
7\ 2 SV s

= lq/?{m—i—gArccos(QR;H)
g

R
1 |H H
& %~§Arccos 1}
= 1 E \/HR*R2+£AI‘CCOS 2R -1 .
R\ 2¢g 2 H

”»

Example 9.5 “Trees do not grow into the sky.” This statement illustrates one of the problems of
the description of the growth process of a closed ecological system. The simplest forms of growth like
linear and exponential growth can only to some extent describe the actual conditions.

Let us consider a limited domain. The number of individuals who can live on this domain is called B
(the carrying capacity of the domain). The rate of birth F' is the fraction by which a given number
of individuals is reproducing per time unit. The rate of death D is the fraction which dies per time
unit. (If for instance D =5 % = 0,05 per time unit, then 100 individuals will be reduced by 5 per
time unit.)

We shall describe the task of how the number of individuals varies in time in such a domain. We shall
start by making precise the assumptions which our analysis is based on.

Let us assume that the rate of birth F is a constant, while the rate of death D = D(t) depends on both
the time and the number of individuals N = N (t) to time t. More precisely, we assume that

(8) D(t) =k - N(t), k constant.

We shall furthermore assume that the situation in the domain is stable, which means that

9 N(t) - B fort— 4o,
(9) D(t) = F  fort— +oco.
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Finally, assume that N(t) is a differentiable function (which therefore not always takes on natural
numbers as values), and that the change AN in a small time interval At is given by

(10) AN = F-At-N—D-At-N.
F

1) P that k = —.

) Prove tha 5

2) Ezplain the contents of the assumption (10) and prove that N (t) satisfies
dN F
11) — =NJ{F——=N>.
o G =N {r- gy
3) Solve the differential equation

d b
(12)—x:x(b—ax), 0<z<—, t>20, a beRy,
dt a
by separating the variables.
4) Prove that if No < B, then

N(t) = 5 t>0.

B b
1 — —1)e 1t
—|—<NO )e

A. A mathematical model of ecological growth, which can be formulated as a differential equation of
first order, in which the variables can be separated.

D. There are given some guidelines. Follow these.
I. 1) It follows from the assumptions (8) and (9) that
D(t) B

=—= = — for t — +o0.

Nit)  F

B
Since k is a constant through the limit process, we have k = ok

2) The change AN of the number of population N is equal to the rate of birth F per time unit
multiplied by the length At of the time interval multiplied by the number of population N,
from which we shall subtract the analogous number for the decrease of the population, i.e. the
rate of death D per time unit multiplied by At and N.

We get from (10) by dividing by At > 0,
F

_:F.N(t)—D(t)-N(t)=N(F—§N>,

F
where we according to (1) have substituted D = k- N = 5 N. By the limit At — 04 we get
(11), i.e.

AN F
S oN(F-ZN).
dt ( B )
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b
3) A separation of the variables then gives for = € }O, — {,
a

L e
z(b—azx) dt

By a decomposition we get

1 1 1 1

x(b—ax) bxr b . b

thus by an integration,

b
t+ec = —{ln|m|—lnx—5}
x 1 ax
= 1 =1
i b b—az
- —z
a
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hence

ax b—(b—ax) b bt
— o — ]_ =
b— ax e

b—ax b—ax

which implies that

b

b— =
“r=7 + coebt

1
Putting ¢ = — = e~ %1, we get
2

hvor ¢s = ¢

b . 1 b coel? b 1
Tr = — - 0\ - _ . = —. .
a 1+ coebt a l4+ceelt a 14ce b

C. TEsT. When

b 1
a 1+cett’

we get by insertion,

d
d—f—bx—l—aajz
b 1 o
- E.(1+c+ce*bt)2'( e(=0)e™)
v? L b? 1
B R A
a l4ce? a? (1+cett)?
_ b2 1 —bt 1 —bt 1 70
— E.m{ce —(I4+ce ™) +1}=0.

Q.E.D.

F
Let N(O)=No < B.If t =N and b= F and a = 5 We see that (11) and (12) are identical.

Thus, by insertion into the solution in (3),

Nyt L _F 1B
T a 1+ce*bt_5 14+ce Ft 14ce Ft’
B
For t = 0 we get
B B
N(0) = Ny = dvs. - _1
(0) 0= T Vs c No ,

hence by insertion,

B

— .
1+ (= —1)e—Ft
+(NO )e

N(t) =

B b
Since Ny < B, we have N 1 >0, hence N(t) < B = —, and the domain of the solution is
a

0
given by t > 0.
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